Iklan

Pertanyaan

Tentukanlah x → ∞ lim ​ 3 x − 25 x 2 − 2 x + 1 ​ 4 x 2 − 1 ​ + x 2 − 1 ​ + 9 x 2 + 3 x − 1 ​ ​ !

Tentukanlah 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

12

:

09

:

14

Klaim

Iklan

Y. Herlanda

Master Teacher

Mahasiswa/Alumni STKIP PGRI Jombang

Jawaban terverifikasi

Jawaban

nilai dari x → ∞ lim ​ 3 x − 25 x 2 − 2 x + 1 ​ 4 x 2 − 1 ​ + x 2 − 1 ​ + 9 x 2 + 3 x − 1 ​ ​ = − 3 .

nilai dari .

Pembahasan

Jawaban yang benar untuk pertanyaan tersebut adalah − 3 . Limit Bentuk Tak Tentu ∞ ∞ ​ x → ∞ lim ​ 3 x − 25 x 2 − 2 x + 1 ​ 4 x 2 − 1 ​ + x 2 − 1 ​ + 9 x 2 + 3 x − 1 ​ ​ Substitusikan nilai x = ∞ ke fungsi di atas! 3 ( ∞ ) − 25 ( ∞ ) 2 − 2 ( ∞ ) + 1 ​ 4 ( ∞ ) 2 − 1 ​ + ( ∞ ) 2 − 1 ​ + 9 ( ∞ ) 2 + 3 ( ∞ ) − 1 ​ ​ = ∞ ∞ ​ Karena ∞ ∞ ​ merupakan bentuk tak tentu, maka limit fungsi di atas perlu kita ubah dengan cara mengeluarkan faktor x dari betuk tersebut. Sehingga diperoleh: lim x → ∞ ​ 3 x − 25 x 2 − 2 x + 1 ​ 4 x 2 − 1 ​ + x 2 − 1 ​ + 9 x 2 + 3 x − 1 ​ ​ ​ = = = = = = = = = = ​ lim x → ∞ ​ x ( 3 ) − x 2 ( 25 − x 2 ​ + x 1 ​ ) ​ x 2 ( 4 − x 2 1 ​ ) ​ + x 2 ( 1 − x 2 1 ​ ) ​ + x 2 ( 9 + x 3 ​ − x 2 1 ​ ) ​ ​ lim x → ∞ ​ x ( 3 ) − x ( 25 − x 2 ​ + x 1 ​ ) ​ x ( 4 − x 2 1 ​ ) ​ + x ( 1 − x 2 1 ​ ) ​ + x ( 9 + x 3 ​ − x 2 1 ​ ) ​ ​ lim x → ∞ ​ x ​ ( 3 − ( 25 − x 2 ​ + x 1 ​ ) ​ ) x ​ ( ( 4 − x 2 1 ​ ) ​ + ( 1 − x 2 1 ​ ) ​ + ( 9 + x 3 ​ − x 2 1 ​ ) ​ ) ​ lim x → ∞ ​ 3 − ( 25 − x 2 ​ + x 1 ​ ) ​ ( 4 − x 2 1 ​ ) ​ + ( 1 − x 2 1 ​ ) ​ + ( 9 + x 3 ​ − x 2 1 ​ ) ​ ​ 3 − ( 25 − ∞ 2 ​ + ∞ 1 ​ ) ​ ( 4 − ∞ 2 1 ​ ) ​ + ( 1 − ∞ 2 1 ​ ) ​ + ( 9 + ∞ 3 ​ − ∞ 2 1 ​ ) ​ ​ 3 − 25 − 0 + 0 ​ 4 − 0 ​ + 1 − 0 ​ + 9 + 0 − 0 ​ ​ 3 − 25 ​ 4 ​ + 1 ​ + 9 ​ ​ 3 − 5 2 + 1 + 3 ​ − 2 6 ​ − 3 ​ Dengan demikian, nilai dari x → ∞ lim ​ 3 x − 25 x 2 − 2 x + 1 ​ 4 x 2 − 1 ​ + x 2 − 1 ​ + 9 x 2 + 3 x − 1 ​ ​ = − 3 .

Jawaban yang benar untuk pertanyaan tersebut adalah .

Limit Bentuk Tak Tentu  

Substitusikan nilai  ke fungsi di atas!

 

Karena  merupakan bentuk tak tentu, maka limit fungsi di atas perlu kita ubah dengan cara mengeluarkan faktor  dari betuk tersebut. Sehingga diperoleh:

 

Dengan demikian, nilai dari .

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Nilai dari x → 5 lim ​ x − 5 x 2 − 25 ​ = …

1

4.2

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia