Iklan

Pertanyaan

Tentukan himpunan penyelesaian dari 2 ⋅ cos ( 2 x + 2 π ​ ) − 2 ​ = 0 , dengan − π ≤ x ≤ π !

Tentukan himpunan penyelesaian dari , dengan !

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

21

:

22

:

29

Klaim

Iklan

N. Puspita

Master Teacher

Jawaban terverifikasi

Jawaban

himpunan penyelesaiannya adalah .

himpunan penyelesaiannya adalah  open curly brackets negative fraction numerator 3 straight pi over denominator 8 end fraction comma negative straight pi over 8 comma fraction numerator 5 straight pi over denominator 8 end fraction comma fraction numerator 7 straight pi over denominator 8 end fraction close curly brackets

Pembahasan

Pembahasan
lock

Persamaan trigonometri pada cos Menentukan nilai Menentukan nilai Jadi, himpunan penyelesaiannya adalah .

table attributes columnalign right center left columnspacing 0px end attributes row cell 2 times cos left parenthesis 2 x plus straight pi over 2 right parenthesis minus square root of 2 end cell equals 0 row cell fraction numerator 2 times cos left parenthesis 2 x plus straight pi over 2 right parenthesis over denominator 2 end fraction end cell equals cell fraction numerator square root of 2 over denominator 2 end fraction end cell row cell cos left parenthesis 2 x plus straight pi over 2 right parenthesis end cell equals cell 1 half square root of 2 end cell row cell cos open parentheses 2 x plus straight pi over 2 close parentheses end cell equals cell cos space straight pi over 4 end cell end table

Persamaan trigonometri pada cos

cos space x space equals space cos space alpha x subscript 1 equals alpha plus k.2 straight pi straight x subscript 2 equals negative straight alpha plus k times 2 straight pi

Menentukan nilai x subscript 1 space dari space table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses 2 x plus straight pi over 2 close parentheses end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell straight pi over 4 end cell end table

table attributes columnalign right center left columnspacing 0px end attributes row cell x subscript 1 end cell equals cell alpha plus k times 2 straight pi end cell row cell 2 straight x plus straight pi over 2 end cell equals cell straight pi over 4 plus k times 2 straight pi end cell row cell 2 straight x end cell equals cell negative straight pi over 4 plus k times 2 straight pi end cell row cell straight x subscript 1 end cell equals cell negative straight pi over 8 plus k times straight pi end cell row blank blank blank row cell bold subtitusi bold space bold italic k end cell bold equals bold 0 row cell straight x subscript 1 end cell equals cell negative straight pi over 8 plus 0 times straight pi end cell row cell straight x subscript 1 end cell equals cell negative straight pi over 8 end cell row cell bold subtitusi bold space bold italic k end cell bold equals bold 1 row cell x subscript italic 1 end cell italic equals cell italic minus pi over italic 8 plus 1 times straight pi end cell row cell straight x subscript 1 end cell equals cell fraction numerator 7 straight pi over denominator 8 end fraction end cell end table

Menentukan nilai x subscript 2 space dari space table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses 2 x plus straight pi over 2 close parentheses end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell straight pi over 4 end cell end table

table attributes columnalign right center left columnspacing 0px end attributes row cell x subscript 1 end cell equals cell negative alpha plus k times 2 straight pi end cell row cell 2 straight x plus straight pi over 2 end cell equals cell negative straight pi over 4 plus k times 2 straight pi end cell row cell 2 straight x end cell equals cell negative fraction numerator 3 straight pi over denominator 4 end fraction plus k times 2 straight pi end cell row cell straight x subscript 1 end cell equals cell negative fraction numerator 3 straight pi over denominator 8 end fraction plus k times straight pi end cell row blank blank blank row cell bold subtitusi bold space bold italic k end cell bold equals bold 0 row cell straight x subscript 1 end cell equals cell negative fraction numerator 3 straight pi over denominator 8 end fraction plus 0 times straight pi end cell row cell straight x subscript 1 end cell equals cell negative fraction numerator 3 straight pi over denominator 8 end fraction end cell row cell bold subtitusi bold space bold italic k end cell bold equals bold 1 row cell x subscript italic 1 end cell italic equals cell italic minus fraction numerator 3 pi over denominator italic 8 end fraction plus 1 times straight pi end cell row cell straight x subscript 1 end cell equals cell fraction numerator 5 straight pi over denominator 8 end fraction end cell end table

     

Jadi, himpunan penyelesaiannya adalah  open curly brackets negative fraction numerator 3 straight pi over denominator 8 end fraction comma negative straight pi over 8 comma fraction numerator 5 straight pi over denominator 8 end fraction comma fraction numerator 7 straight pi over denominator 8 end fraction close curly brackets

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Tentukan nilai x pada interval − π ≤ x ≤ π yang memenuhi cos ( 2 x − 3 1 ​ π ) = 1 .

2

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia