Iklan

Pertanyaan

Solve the following system for x dan y . { x 2 1 ​ + y 2 1 ​ = a 2 1 ​ y 2 1 ​ + x y 1 ​ = b 2 1 ​ ​

Solve the following system for  .

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

10

:

55

:

11

Klaim

Iklan

D. Wahyu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Semarang

Jawaban terverifikasi

Jawaban

solusi adalah .

solusi adalah open parentheses square root of fraction numerator a squared over denominator 1 plus a squared end fraction end root space comma square root of fraction numerator b squared over denominator 1 plus b squared end fraction end root close parentheses space space dan space open parentheses negative square root of fraction numerator straight a squared over denominator 1 plus straight a squared end fraction end root space comma negative square root of fraction numerator straight b squared over denominator 1 plus straight b squared end fraction end root close parentheses space.

Pembahasan

Diketahui: Selanjutnya, persamaan (1) = persamaan (2) diperoleh Subtitusikan persamaan (5) ke persamaan (1),sehingga Selanjutnya, subtitusikan persamaan (5) ke persamaan (2) , sehingga Jadi, solusi adalah .

Diketahui:

1 over x squared plus fraction numerator 1 over denominator x y end fraction equals 1 over a squared space fraction numerator y plus 1 over denominator x y end fraction equals 1 over a squared space left parenthesis Dikali space silang right parenthesis a squared left parenthesis y plus 1 right parenthesis equals x y... left parenthesis 1 right parenthesis  1 over y squared plus fraction numerator 1 over denominator x y end fraction equals 1 over b squared fraction numerator x y plus 1 over denominator x y end fraction equals 1 over b squared b squared space open parentheses x y plus 1 close parentheses equals x y space... left parenthesis 2 right parenthesis

Selanjutnya, persamaan (1) = persamaan (2) diperoleh

a squared left parenthesis x y plus 1 right parenthesis equals b squared left parenthesis x y plus 1 right parenthesis a squared x y plus a squared equals b squared x y plus b squared a squared x y minus b squared x y equals b squared minus a squared x y left parenthesis a squared minus b squared right parenthesis equals negative a squared plus b squared x y up diagonal strike left parenthesis a squared minus b squared right parenthesis end strike equals negative up diagonal strike left parenthesis a squared minus b squared right parenthesis end strike x y equals negative 1 space... left parenthesis 3 right parenthesis

Subtitusikan persamaan (5) ke persamaan (1),sehingga

1 over x squared plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis end fraction equals 1 over a squared 1 over x squared minus 1 equals 1 over a squared 1 over x squared equals 1 over a squared plus 1 1 over x squared equals fraction numerator 1 plus a squared over denominator a squared end fraction a squared equals x squared space left parenthesis 1 plus a squared right parenthesis x squared equals fraction numerator a squared over denominator left parenthesis 1 plus a squared right parenthesis end fraction x equals plus-or-minus square root of fraction numerator a squared over denominator 1 plus a squared end fraction end root x subscript 1 equals square root of fraction numerator a squared over denominator 1 plus a squared end fraction end root comma space space x subscript 2 equals negative square root of fraction numerator a squared over denominator 1 plus a squared end fraction end root

Selanjutnya, subtitusikan  persamaan (5)  ke persamaan (2) , sehingga

1 over y squared plus fraction numerator 1 over denominator left parenthesis negative 1 right parenthesis end fraction equals 1 over b squared 1 over y squared minus 1 equals 1 over b squared 1 over y squared equals 1 over b squared plus 1 1 over y squared equals fraction numerator 1 plus b squared over denominator b squared end fraction b squared equals y squared space left parenthesis 1 plus b squared right parenthesis y squared equals fraction numerator b squared over denominator left parenthesis 1 plus b squared right parenthesis end fraction y equals plus-or-minus square root of fraction numerator b squared over denominator 1 plus b squared end fraction end root y subscript 1 equals square root of fraction numerator b squared over denominator 1 plus b squared end fraction end root comma space y subscript 2 equals negative square root of fraction numerator b squared over denominator 1 plus b squared end fraction end root 

Jadi, solusi adalah open parentheses square root of fraction numerator a squared over denominator 1 plus a squared end fraction end root space comma square root of fraction numerator b squared over denominator 1 plus b squared end fraction end root close parentheses space space dan space open parentheses negative square root of fraction numerator straight a squared over denominator 1 plus straight a squared end fraction end root space comma negative square root of fraction numerator straight b squared over denominator 1 plus straight b squared end fraction end root close parentheses space.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Selesaikan sistem persamaan berikut! { x 2 + y 2 = 7 x ⋅ y = 3 ​

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia