Iklan

Iklan

Pertanyaan

Sebuah objek berjalan sepanjang suatu garis koordinat menurut percepatan α (dalam centimeter per detik) dengan kecepatan awal v 0 ​ (dalam centimeter per detik) dan jarak s 0 ​ (dalam centimeter). Tentukan kecepatan v beserta jarak berarah s setelah 2 detik. c. α = 3 2 t + 1 ​ , v 0 ​ = 0 , s 0 ​ = 10

Sebuah objek berjalan sepanjang suatu garis koordinat menurut percepatan (dalam centimeter per detik) dengan kecepatan awal (dalam centimeter per detik) dan jarak (dalam centimeter). Tentukan kecepatan  beserta jarak berarah  setelah 2 detik.

c.  ,   

  1. ... 

  2. ... 

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

a. Kecepatan setelah detik Misal Karena , maka Sehingga Kecepatan setelah detik b. Jarak setelah 2 detik Misal Sehingga Karena Sehingga Jarak setelah 2 detik Jadi kecepatan setelah 2 detik dan jarak setelah 2 detik

a. Kecepatan setelah undefined detik

v equals integral a blank d t v equals integral cube root of 2 t plus 1 end root d t

Misal

open parentheses 2 t plus 1 close parentheses equals u 2 d t equals d u d t equals fraction numerator d u over denominator 2 end fraction v equals integral cube root of u fraction numerator d u over denominator 2 end fraction v equals 1 half integral u to the power of 1 third end exponent d u v equals 1 half open parentheses fraction numerator 1 over denominator 1 third plus 1 end fraction close parentheses u to the power of 1 third plus 1 end exponent plus C v equals 1 half fraction numerator 1 over denominator 4 over 3 end fraction u to the power of 4 over 3 end exponent plus C v equals 1 half 3 over 4 u to the power of 4 over 3 end exponent plus C v equals 3 over 8 u to the power of 4 over 3 end exponent plus C v equals 3 over 8 open parentheses 2 t plus 1 close parentheses to the power of 4 over 3 end exponent plus C

Karena v subscript o equals 0, maka

v equals 3 over 8 open parentheses 2 t plus 1 close parentheses to the power of 4 over 3 end exponent plus C 0 equals 3 over 8 open parentheses 2 left parenthesis 0 right parenthesis plus 1 close parentheses to the power of 4 over 3 end exponent plus C 0 equals 3 over 8 open parentheses 1 close parentheses to the power of 4 over 3 end exponent plus C 0 equals 3 over 8 plus C C equals negative 3 over 8

Sehingga

v equals 3 over 8 open parentheses 2 t plus 1 close parentheses to the power of 4 over 3 end exponent minus 3 over 8

Kecepatan setelah 2 detik

v equals 3 over 8 open parentheses 2 t plus 1 close parentheses to the power of 4 over 3 end exponent minus 3 over 8 v equals 3 over 8 open parentheses 2 left parenthesis 2 right parenthesis plus 1 close parentheses to the power of 4 over 3 end exponent minus 3 over 8 v equals 3 over 8 open parentheses 5 close parentheses to the power of 4 over 3 end exponent minus 3 over 8 v equals 3 over 8 open parentheses 5 cube root of 5 minus 1 close parentheses cm over detik

b. Jarak setelah 2 detik

s equals integral v blank d t s equals integral open parentheses 3 over 8 open parentheses 2 t plus 1 close parentheses to the power of 4 over 3 end exponent minus 3 over 8 close parentheses d t

Misal

open parentheses 2 t plus 1 close parentheses equals u 2 d t equals d u d t equals fraction numerator d u over denominator 2 end fraction

Sehingga

s equals integral 3 over 8 u to the power of 4 over 3 end exponent fraction numerator d u over denominator 2 end fraction blank minus integral 3 over 8 d t s equals 3 over 8 open parentheses 1 half integral u to the power of 4 over 3 end exponent d u minus integral d t blank close parentheses s equals 3 over 8 open parentheses 1 half fraction numerator 1 over denominator left parenthesis 4 over 3 plus 1 right parenthesis end fraction u to the power of 4 over 3 plus 1 end exponent minus t plus C close parentheses s equals 3 over 8 open parentheses 1 half fraction numerator 1 over denominator 7 over 3 end fraction u to the power of 7 over 3 end exponent minus t right parenthesis close parentheses plus C s equals 3 over 8 open parentheses 1 half 3 over 7 u to the power of 7 over 3 end exponent minus t close parentheses plus C s equals 3 over 8 open parentheses 3 over 14 open parentheses 2 t plus 1 close parentheses to the power of 7 over 3 end exponent minus t close parentheses plus C

Karena s subscript 0 equals 10

s equals 3 over 8 open parentheses 3 over 14 open parentheses 2 t plus 1 close parentheses to the power of 7 over 3 end exponent minus t close parentheses plus C 10 equals 3 over 8 open parentheses 3 over 14 open parentheses 2 left parenthesis 0 right parenthesis plus 1 close parentheses to the power of 7 over 3 end exponent minus open parentheses 0 close parentheses close parentheses plus C 10 equals 3 over 8 open parentheses 3 over 14 open parentheses 1 close parentheses to the power of 7 over 3 end exponent minus open parentheses 0 close parentheses close parentheses plus C 10 equals 3 over 8 open parentheses 3 over 14 minus 0 close parentheses plus C 10 equals 3 over 8 open parentheses 3 over 14 close parentheses plus C 10 equals 9 over 112 plus C 10 minus 9 over 112 equals C 1111 over 112 equals C

Sehingga

s equals 3 over 8 open parentheses 3 over 14 open parentheses 2 t plus 1 close parentheses to the power of 7 over 3 end exponent minus t close parentheses plus 1111 over 112

Jarak setelah 2 detik

s equals 3 over 8 open parentheses 3 over 14 open parentheses 2 t plus 1 close parentheses to the power of 7 over 3 end exponent minus t close parentheses plus 1111 over 112 s equals 3 over 8 open parentheses 3 over 14 open parentheses 2 left parenthesis 2 right parenthesis plus 1 close parentheses to the power of 7 over 3 end exponent minus 2 close parentheses plus 1111 over 112 s equals 3 over 8 open parentheses 3 over 14 open parentheses 4 plus 1 close parentheses to the power of 7 over 3 end exponent minus 2 close parentheses plus 1111 over 112 s equals 3 over 8 open parentheses 3 over 14 open parentheses 5 close parentheses to the power of 7 over 3 end exponent minus 2 close parentheses plus 1111 over 112 s equals 3 over 8 open parentheses 3 over 14 left parenthesis 25 cube root of 5 minus 2 close parentheses plus 1111 over 112 blank cm

Jadi kecepatan setelah 2 detik 3 over 8 open parentheses 5 cube root of 5 minus 1 close parentheses cm over detik dan jarak setelah 2 detik     3 over 8 open parentheses 3 over 14 left parenthesis 25 cube root of 5 minus 2 close parentheses plus 1111 over 112 blank cm

 

Latihan Bab

Pengenalan Integral

Integral Tak Tentu

Integral Substitusi

Aplikasi Integral Tak Tentu

105

Iklan

Iklan

Pertanyaan serupa

Sebuah objek berjalan sepanjang suatu garis koordinat menurut percepatan α (dalam centimeter per detik) dengan kecepatan awal v 0 ​ (dalam centimeter per detik) dan jarak s 0 ​ (dalam centimeter). Ten...

936

5.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia