Ingat rumus jumlah dan selisihtrigonometri berikut ini:
2 sin A cos B = sin ( A + B ) + sin ( A − B )
2 cos A sin B = sin ( A + B ) − sin ( A − B )
2 cos A cos B = cos ( A + B ) + cos ( A − B )
sin A − sin B = 2 cos 2 1 ( A + B ) sin 2 1 ( A − B )
cos A + cos B = 2 cos 2 1 ( A + B ) cos 2 1 ( A − B )
Dengan menggunakan konsep di atas, diperoleh hasil:
tan 1 0 ∘ + tan 7 0 ∘ − tan 5 0 ∘ = ( c o s 1 0 ∘ s i n 1 0 ∘ + c o s 7 0 ∘ s i n 7 0 ∘ ) − c o s 5 0 ∘ s i n 5 0 ∘ = ( c o s 7 0 ∘ c o s 1 0 ∘ c o s 7 0 ∘ s i n 1 0 ∘ + s i n 7 0 ∘ c o s 1 0 ∘ ) − c o s 5 0 ∘ s i n 5 0 ∘ = 2 2 ⋅ ( c o s 7 0 ∘ c o s 1 0 ∘ c o s 7 0 ∘ s i n 1 0 ∘ + s i n 7 0 ∘ c o s 1 0 ∘ ) − c o s 5 0 ∘ s i n 5 0 ∘ = ( 2 c o s 7 0 ∘ c o s 1 0 ∘ 2 c o s 7 0 ∘ s i n 1 0 ∘ + 2 s i n 7 0 ∘ c o s 1 0 ∘ ) − c o s 5 0 ∘ s i n 5 0 ∘ = ( c o s ( 7 0 ∘ + 1 0 ∘ ) + c o s ( 7 0 ∘ − 1 0 ∘ ) ( s i n ( 7 0 ∘ + 1 0 ∘ ) − s i n ( 7 0 ∘ − 1 0 ∘ ) ) + ( s i n ( 7 0 ∘ + 1 0 ∘ ) + s i n ( 7 0 ∘ − 1 0 ∘ ) ) ) − c o s 5 0 ∘ s i n 5 0 ∘ = ( c o s 8 0 ∘ + c o s 6 0 ∘ ( s i n 8 0 ∘ − s i n 6 0 ∘ ) + ( s i n 8 0 ∘ + s i n 6 0 ∘ ) ) − c o s 5 0 ∘ s i n 5 0 ∘ = ⎝ ⎛ c o s 8 0 ∘ + 2 1 2 s i n 8 0 ∘ ⎠ ⎞ − c o s 5 0 ∘ s i n 5 0 ∘ = c o s 8 0 ∘ c o s 5 0 ∘ + 2 1 cos 5 0 ∘ 2 s i n 8 0 ∘ c o s 5 0 ∘ − s i n 5 0 ∘ ( c o s 8 0 ∘ + 2 1 ) ( samakan penyebut ) = c o s 8 0 ∘ c o s 5 0 ∘ + 2 1 cos 5 0 ∘ 2 s i n 8 0 ∘ c o s 5 0 ∘ − c o s 8 0 ∘ s i n 5 0 ∘ − 2 1 s i n 5 0 ∘ = c o s 8 0 ∘ c o s 5 0 ∘ + 2 1 cos 5 0 ∘ 2 s i n 8 0 ∘ c o s 5 0 ∘ − c o s 8 0 ∘ s i n 5 0 ∘ − 2 1 s i n 5 0 ∘ ⋅ 2 2 = 2 c o s 8 0 ∘ c o s 5 0 ∘ + cos 5 0 ∘ 2 ⋅ 2 s i n 8 0 ∘ c o s 5 0 ∘ − 2 c o s 8 0 ∘ s i n 5 0 ∘ − s i n 5 0 ∘ = c o s ( 8 0 ∘ + 5 0 ∘ ) + c o s ( 8 0 ∘ − 5 0 ∘ ) + cos 5 0 ∘ 2 ( s i n ( 8 0 ∘ + 5 0 ∘ ) + s i n ( 8 0 ∘ − 5 0 ∘ ) ) − ( s i n ( 8 0 ∘ + 5 0 ∘ ) − s i n ( 8 0 ∘ − 5 0 ∘ ) ) − s i n 5 0 ∘ = c o s 13 0 ∘ + c o s 3 0 ∘ + cos 5 0 ∘ 2 ( s i n 13 0 ∘ + s i n 3 0 ∘ ) − ( s i n 13 0 ∘ − s i n 3 0 ∘ ) − s i n 5 0 ∘ = c o s 13 0 ∘ + 2 1 3 + cos 5 0 ∘ 2 ( s i n 13 0 ∘ + 2 1 ) − ( s i n 13 0 ∘ − 2 1 ) − s i n 5 0 ∘ = 2 1 3 + c o s 13 0 ∘ + cos 5 0 ∘ 2 s i n 13 0 ∘ + 1 − s i n 13 0 ∘ + 2 1 − s i n 5 0 ∘ = 2 1 3 + c o s 13 0 ∘ + cos 5 0 ∘ 2 3 + s i n 13 0 ∘ − s i n 5 0 ∘ = 2 1 3 + ( 2 c o s 2 1 ( 13 0 ∘ + 5 0 ∘ ) c o s 2 1 ( 13 0 ∘ − 5 0 ∘ ) ) 2 3 + ( 2 c o s 2 1 ( 13 0 ∘ + 5 0 ∘ ) s i n 2 1 ( 13 0 ∘ − 5 0 ∘ ) ) = 2 1 3 + ( 2 c o s 2 1 ( 18 0 ∘ ) c o s 2 1 ( 8 0 ∘ ) ) 2 3 + ( 2 c o s 2 1 ( 18 0 ∘ ) s i n 2 1 ( 8 0 ∘ ) ) = 2 1 3 + ( 2 c o s 9 0 ∘ c o s 4 0 ∘ ) 2 3 + ( 2 c o s 9 0 ∘ s i n 4 0 ∘ ) = 2 1 3 + ( 2 ⋅ 0 ⋅ c o s 4 0 ∘ ) 2 3 + ( 2 ⋅ 0 ⋅ s i n 4 0 ∘ ) = 2 1 3 + 0 2 3 + 0 = 2 1 3 2 3 = 2 3 ÷ 2 3 = 2 3 × 3 2 = 3 3 = 3 3 × 3 3 = 3 3 3 = 3
Jadi, tan 1 0 ∘ + tan 7 0 ∘ − tan 5 0 ∘ = 3 .
Oleh karena itu, jawaban yang benar adalah D.
Ingat rumus jumlah dan selisih trigonometri berikut ini:
2sinAcosB=sin(A+B)+sin(A−B)
2cosAsinB=sin(A+B)−sin(A−B)
2cosAcosB=cos(A+B)+cos(A−B)
sinA−sinB=2cos21(A+B)sin21(A−B)
cosA+cosB=2cos21(A+B)cos21(A−B)
Dengan menggunakan konsep di atas, diperoleh hasil: