Iklan

Iklan

Pertanyaan

Misalkan diketahui barisan bilangan a 1 ​ , a 2 ​ , a 3 ​ , ..., dengan a 1 ​ = 2 , a 2 ​ = 5 , a 3 ​ = 8 , dan a n ​ = a n − 1 ​ + a n − 2 ​ + a n − 3 ​ . Buktikan bahwa a n ​ ≤ 2 n .

Misalkan diketahui barisan bilangan , ..., dengan , dan . Buktikan bahwa 

Iklan

I. Kumaralalita

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Iklan

Pembahasan

Langkah 1. Akan dibuktikan benar untuk Oleh karenabernilai benar, maka benar untuk . Langkah 2. Andaikan benar untuk yaitu a 1 ​ ≤ 2 1 , a 2 ​ ≤ 2 2 , a 3 ​ ≤ 2 3 , ⋅ ⋅ ⋅ , a k –2 ​ ≤ 2 k –2 , a k –1 ​ ≤ 2 k –1 . Akan dibuktikan benar untuk , yaitu . Bukti: Dengan demikian terbukti . Oleh karena Langkah 1 dan Langkah 2 keduanya bernilai benar, maka terbukti bahwa .

Langkah 1.

Akan dibuktikan begin mathsize 14px style P left parenthesis n right parenthesis end style benar untuk begin mathsize 14px style n equals 1 end style  

begin mathsize 14px style a subscript 1 equals 2 less or equal than 2 to the power of 1 equals 2 end style  

Oleh karena bernilai benar, maka begin mathsize 14px style P left parenthesis n right parenthesis end style benar untuk begin mathsize 14px style n equals 1 end style.

Langkah 2. 

Andaikan benar untuk begin mathsize 14px style n equals 1 , 2 comma 3 comma times times times comma k – 1 comma k comma end style yaitu

    .

Akan dibuktikan begin mathsize 14px style P left parenthesis n right parenthesis end style benar untuk begin mathsize 14px style n equals k plus 1 end style, yaitu begin mathsize 14px style a subscript k plus 1 end subscript less or equal than 2 to the power of k plus 1 end exponent end style.

Bukti:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell a subscript k plus 1 end subscript end cell equals cell a subscript left parenthesis k plus 1 right parenthesis end subscript plus a subscript left parenthesis k plus 1 right parenthesis – 2 end subscript plus a subscript left parenthesis k plus 1 right parenthesis – 3 end subscript end cell row blank equals cell a subscript k plus a subscript k – 1 end subscript plus a subscript k – 2 end subscript less or equal than 2 to the power of k end cell row blank blank cell plus 2 to the power of k – 1 end exponent plus 2 to the power of k – 2 end exponent end cell row blank equals cell 2 to the power of k plus 2 to the power of k cross times 2 to the power of – 1 end exponent plus 2 to the power of k cross times 2 to the power of – 2 end exponent end cell row blank equals cell 2 to the power of k plus 1 half cross times 2 to the power of k plus 1 fourth cross times 2 to the power of k end cell row blank equals cell 1 3 over 4 cross times 2 to the power of k end cell row blank less or equal than cell 2 cross times 2 to the power of k end cell row blank equals cell 2 to the power of k plus 1 end exponent end cell end table end style  

Dengan demikian terbukti .

Oleh karena Langkah 1 dan Langkah 2 keduanya bernilai benar, maka terbukti bahwabegin mathsize 14px style a subscript n less or equal than 2 to the power of n end style.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

5

Iklan

Iklan

Pertanyaan serupa

Buktikan masing-masing ketidaksamaan eksponen di bawah ini. a. 2 n ≥ 2 n

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia