Iklan

Pertanyaan

Lukislah DHP dari setiap SPtKKDV di bawah ini. 2. { y ≤ 3 − x 2 y ≥ x 2 − 3 ​

Lukislah DHP dari setiap SPtKKDV di bawah ini.

2.   

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

15

:

24

:

44

Klaim

Iklan

D. Rajib

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Malang

Jawaban terverifikasi

Pembahasan

Cari DHP dari terlebih dahulu Kurva pembatas dari adalah Berdasarkan bentuk umum fungsi kuadrat maka diketahui Cari titik puncak dari bentuk persamaan menggunakan rumus Cari titik-titik pembentuk kurva pembatas tersebut untuk untuk Untuk mengetahui DHP lakukan uji titik untuk karena titik benar maka daerah yang terdapat titik merupakan DHP dari Selanjutnya cari DHP dari Kurva pembatas dari adalah Berdasarkan bentuk umum fungsi kuadrat maka diketahui Cari titik puncak dari bentuk persamaan menggunakan rumus Cari titik-titik pembentuk kurva pembatas tersebut untuk untuk Untuk mengetahui letak DHP lakukan uji titik untuk karena titik benar maka daerah yang terdapat titik merupakan DHP dari DHP dari adalah irisan dari DHP dan DHP . Jadi, DHP dari yaitu

Cari DHP dari y less or equal than 3 minus x squared terlebih dahulu

Kurva pembatas dari y less or equal than 3 minus x squared adalah y equals negative x squared plus 3  

Berdasarkan bentuk umum fungsi kuadrat y equals a x squared plus b x plus c maka diketahui

a equals negative 1 b equals 0 c equals 3 

Cari titik puncak dari bentuk persamaan y equals a x squared plus b x plus c menggunakan rumus left parenthesis x subscript p comma space y subscript p right parenthesis equals left parenthesis negative fraction numerator b over denominator 2 a end fraction comma space minus fraction numerator b squared minus 4 a c over denominator 4 a end fraction right parenthesis 

table attributes columnalign right center left columnspacing 0px end attributes row cell left parenthesis x subscript p comma space y subscript p right parenthesis end cell equals cell left parenthesis negative fraction numerator b over denominator 2 a end fraction comma space minus fraction numerator b squared minus 4 a c over denominator 4 a end fraction right parenthesis end cell row blank equals cell left parenthesis negative fraction numerator 0 over denominator 2 left parenthesis negative 1 right parenthesis end fraction comma space minus fraction numerator 0 squared minus 4 left parenthesis negative 1 right parenthesis left parenthesis 3 right parenthesis over denominator 4 left parenthesis negative 1 right parenthesis end fraction right parenthesis end cell row blank equals cell left parenthesis 0 comma space minus fraction numerator 12 over denominator negative 4 end fraction right parenthesis end cell row blank equals cell left parenthesis 0 comma space 3 right parenthesis end cell end table 

Cari titik-titik pembentuk kurva pembatas tersebut

untuk x equals 2  

table attributes columnalign right center left columnspacing 0px end attributes row y equals cell negative x squared plus 3 end cell row y equals cell negative left parenthesis 2 right parenthesis squared plus 3 end cell row y equals cell negative 4 plus 3 end cell row y equals cell negative 1 end cell row cell left parenthesis x comma space y right parenthesis end cell equals cell left parenthesis 2 comma space minus 1 right parenthesis end cell end table  

untuk x equals negative 2 

table attributes columnalign right center left columnspacing 0px end attributes row y equals cell negative x squared plus 3 end cell row y equals cell negative left parenthesis negative 2 right parenthesis squared plus 3 end cell row y equals cell negative 4 plus 3 end cell row y equals cell negative 1 end cell row cell left parenthesis x comma space y right parenthesis end cell equals cell left parenthesis negative 2 comma space minus 1 right parenthesis end cell end table 

Untuk mengetahui DHP lakukan uji titik

untuk left parenthesis 0 comma space 0 right parenthesis 

y less or equal than 3 minus x squared 0 less or equal than 3 minus 0 squared 0 less or equal than 3 space left parenthesis benar right parenthesis  

karena titik left parenthesis 0 comma space 0 right parenthesis benar maka daerah yang terdapat titik left parenthesis 0 comma space 0 right parenthesis merupakan DHP dari y less or equal than 3 minus x squared

Selanjutnya cari DHP dari y greater or equal than x squared minus 3 

Kurva pembatas dari y greater or equal than x squared minus 3 adalah y equals x squared minus 3   

Berdasarkan bentuk umum fungsi kuadrat y equals a x squared plus b x plus c maka diketahui

a equals 1 b equals 0 c equals negative 3  

Cari titik puncak dari bentuk persamaan y equals a x squared plus b x plus c menggunakan rumus left parenthesis x subscript p comma space y subscript p right parenthesis equals left parenthesis negative fraction numerator b over denominator 2 a end fraction comma space minus fraction numerator b squared minus 4 a c over denominator 4 a end fraction right parenthesis 

table attributes columnalign right center left columnspacing 0px end attributes row cell left parenthesis x subscript p comma space y subscript p right parenthesis end cell equals cell left parenthesis negative fraction numerator b over denominator 2 a end fraction comma space minus fraction numerator b squared minus 4 a c over denominator 4 a end fraction right parenthesis end cell row blank equals cell left parenthesis negative fraction numerator 0 over denominator 2 left parenthesis 1 right parenthesis end fraction comma space minus fraction numerator 0 squared minus 4 left parenthesis 1 right parenthesis left parenthesis negative 3 right parenthesis over denominator 4 left parenthesis 1 right parenthesis end fraction right parenthesis end cell row blank equals cell left parenthesis 0 comma space minus 12 over 4 right parenthesis end cell row blank equals cell left parenthesis 0 comma space minus 3 right parenthesis end cell end table  

Cari titik-titik pembentuk kurva pembatas tersebut

untuk x equals 2  

table attributes columnalign right center left columnspacing 0px end attributes row y equals cell x squared minus 3 end cell row y equals cell left parenthesis 2 right parenthesis squared minus 3 end cell row y equals cell 4 minus 3 end cell row y equals 1 row cell left parenthesis x comma space y right parenthesis end cell equals cell left parenthesis 2 comma space 1 right parenthesis end cell end table    

untuk x equals negative 2 

table attributes columnalign right center left columnspacing 0px end attributes row y equals cell x squared minus 3 end cell row y equals cell left parenthesis negative 2 right parenthesis squared minus 3 end cell row y equals cell 4 minus 3 end cell row y equals 1 row cell left parenthesis x comma space y right parenthesis end cell equals cell left parenthesis negative 2 comma space 1 right parenthesis end cell end table  

Untuk mengetahui letak DHP lakukan uji titik

untuk left parenthesis 0 comma space 0 right parenthesis 

y greater or equal than x squared minus 3 0 greater or equal than 0 squared minus 3 0 greater or equal than negative 3 space left parenthesis benar right parenthesis   

karena titik left parenthesis 0 comma space 0 right parenthesis benar maka daerah yang terdapat titik left parenthesis 0 comma space 0 right parenthesis merupakan DHP dari y greater or equal than x squared minus 3 

DHP dari open curly brackets table attributes columnalign left end attributes row cell y less or equal than 3 minus x squared end cell row cell y greater or equal than x squared minus 3 end cell end table close adalah irisan dari DHP y less or equal than 3 minus x squared dan DHP y greater or equal than x squared minus 3.

Jadi, DHP dari open curly brackets table attributes columnalign left end attributes row cell y less or equal than 3 minus x squared end cell row cell y greater or equal than x squared minus 3 end cell end table close yaitu

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

32

Iklan

Pertanyaan serupa

Lukislah daerah himpunan penyelesaian (DHP) dari masing-masing sistem pertidaksamaan di bawah ini. f. { y ≥ x 2 − 2 y < − x 2 ​

187

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia