Iklan

Pertanyaan

Jika variabel acak Z ∼ N ( 0 , 1 ) , nilai P ( Z ≤ 3 ) adalah ...

Jika variabel acak , nilai  adalah ...

  1. begin mathsize 14px style integral subscript 0 superscript 3 fraction numerator 1 over denominator square root of 2 straight pi end root end fraction straight e to the power of negative 1 half straight z squared end exponent d straight z end style 

  2. begin mathsize 14px style integral subscript 3 superscript infinity fraction numerator 1 over denominator square root of 2 straight pi end root end fraction straight e to the power of negative 1 half straight z squared end exponent d straight z end style 

  3. begin mathsize 14px style integral subscript negative infinity end subscript superscript 3 fraction numerator 1 over denominator square root of 2 straight pi end root end fraction straight e to the power of negative 1 half straight z squared end exponent d straight z end style 

  4. begin mathsize 14px style integral subscript 0 superscript 3 fraction numerator 1 over denominator straight sigma square root of 2 straight pi end root end fraction straight e to the power of negative 1 half open parentheses fraction numerator straight x minus straight mu over denominator straight sigma end fraction close parentheses squared end exponent d straight z end style 

  5. begin mathsize 14px style integral subscript negative infinity end subscript superscript 3 fraction numerator 1 over denominator straight sigma square root of 2 straight pi end root end fraction straight e to the power of negative 1 half open parentheses fraction numerator straight x minus straight mu over denominator straight sigma end fraction close parentheses end exponent squared d straight z end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

23

:

14

:

30

Klaim

Iklan

S. Ayu

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Prof. DR. Hamka

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah C.

jawaban yang tepat adalah C.

Pembahasan

Fungsi peluang variabel acak didefinisikan sebagai: untuk . Fungsi distributif komulatif variabel acak didefinisikan sebagai: . Maka, untuk dengannilai adalah sebagai berikut: Jadi, jawaban yang tepat adalah C.

Fungsi peluang variabel acak begin mathsize 14px style straight Z tilde straight N open parentheses 0 comma space 1 close parentheses end style didefinisikan sebagai:

begin mathsize 14px style f open parentheses straight z close parentheses equals straight P open parentheses straight Z equals straight z close parentheses equals fraction numerator 1 over denominator square root of 2 straight pi end root end fraction straight e to the power of negative 1 half straight z squared end exponent end style untuk begin mathsize 14px style negative infinity less than straight z less than infinity end style.

Fungsi distributif komulatif variabel acak begin mathsize 14px style straight Z tilde straight N open parentheses 0 comma space 1 close parentheses end style didefinisikan sebagai:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight F open parentheses straight z close parentheses end cell equals cell straight P open parentheses straight Z less or equal than straight z close parentheses equals integral subscript negative infinity end subscript superscript z f open parentheses straight z close parentheses d straight z equals fraction numerator 1 over denominator square root of 2 straight pi end root end fraction integral subscript negative infinity end subscript superscript straight z straight e to the power of negative 1 half straight z squared end exponent d straight z end cell end table end style.

Maka, untuk begin mathsize 14px style straight Z tilde straight N open parentheses 0 comma 1 close parentheses end style dengan nilai begin mathsize 14px style straight P open parentheses straight Z less or equal than 3 close parentheses end style adalah sebagai berikut:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight P open parentheses straight Z less or equal than straight z close parentheses end cell equals cell integral subscript negative infinity end subscript superscript straight z f open parentheses straight z close parentheses d straight z end cell row cell straight P open parentheses straight Z less or equal than 3 close parentheses end cell equals cell integral subscript negative infinity end subscript superscript 3 fraction numerator 1 over denominator square root of 2 straight pi end root end fraction straight e to the power of negative 1 half straight z squared end exponent d straight z end cell row blank equals cell fraction numerator 1 over denominator square root of 2 straight pi end root end fraction integral subscript negative infinity end subscript superscript 3 straight e to the power of negative 1 half straight z squared end exponent dz end cell end table end style

Jadi, jawaban yang tepat adalah C.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

8

Zahrotul Awwelina

Jawaban tidak sesuai

Iklan

Pertanyaan serupa

Jika Z~N(0, 1), maka P(-1,16 < Z < -0,84) = ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia