Iklan

Pertanyaan

Jika M = ( 2 1 ​ 2 ​ 2 1 ​ ​ − 2 1 ​ 2 ​ 2 1 ​ ​ ) , maka ∣ ∣ ​ M T ∣ ∣ ​ = ...

Jika , maka  ...

  1. fraction numerator 5 over denominator square root of 2 end fraction

  2. fraction numerator 4 over denominator square root of 2 end fraction

  3. fraction numerator 3 over denominator square root of 2 end fraction

  4. fraction numerator 2 over denominator square root of 2 end fraction

  5. fraction numerator 1 over denominator square root of 2 end fraction

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

05

:

49

:

40

Klaim

Iklan

S. Ayu

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Prof. DR. Hamka

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah E.

jawaban yang benar adalah E.

Pembahasan

Diketahui: Matriks . Ditanya : Determinan transpose matriks . Rumus transpose matriks yaitu: Rumus determinan matriks yaitu: Transpose matriksnya yaitu: Sehingga diperoleh penyelesaiannya yaitu: Maka . Oleh karena itu, jawaban yang benar adalah E.

Diketahui: Matriks M equals open parentheses table row cell 1 half square root of 2 end cell cell negative 1 half square root of 2 end cell row cell 1 half end cell cell 1 half end cell end table close parentheses.

Ditanya : Determinan transpose matriks M.

Rumus transpose matriks 2 cross times 2 yaitu:

table attributes columnalign right center left columnspacing 0px end attributes row A equals cell open parentheses table row a b row c d end table close parentheses end cell row cell A to the power of T end cell equals cell open parentheses table row a c row b d end table close parentheses end cell end table

Rumus determinan matriks 2 cross times 2 yaitu:

table attributes columnalign right center left columnspacing 0px end attributes row A equals cell open parentheses table row a b row c d end table close parentheses end cell row cell open vertical bar A close vertical bar end cell equals cell a times d minus b times c end cell end table

Transpose matriksnya yaitu:

table attributes columnalign right center left columnspacing 0px end attributes row M equals cell open parentheses table row cell 1 half square root of 2 end cell cell negative 1 half square root of 2 end cell row cell 1 half end cell cell 1 half end cell end table close parentheses end cell row cell M to the power of T end cell equals cell open parentheses table row cell 1 half square root of 2 end cell cell 1 half end cell row cell negative 1 half square root of 2 end cell cell 1 half end cell end table close parentheses end cell end table

Sehingga diperoleh penyelesaiannya yaitu:

table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar M to the power of T close vertical bar end cell equals cell open vertical bar table row cell 1 half square root of 2 end cell cell 1 half end cell row cell negative 1 half square root of 2 end cell cell 1 half end cell end table close vertical bar end cell row blank equals cell 1 half square root of 2 open parentheses 1 half close parentheses minus 1 half open parentheses negative 1 half square root of 2 close parentheses end cell row blank equals cell 1 fourth square root of 2 plus 1 fourth square root of 2 end cell row blank equals cell 2 over 4 square root of 2 end cell row blank equals cell 1 half square root of 2 end cell row blank equals cell fraction numerator square root of 2 over denominator 2 end fraction end cell row blank equals cell fraction numerator down diagonal strike square root of 2 end strike over denominator down diagonal strike square root of 2 end strike square root of 2 end fraction end cell row blank equals cell fraction numerator 1 over denominator square root of 2 end fraction end cell end table

Maka open vertical bar M to the power of T close vertical bar equalsfraction numerator 1 over denominator square root of 2 end fraction.

Oleh karena itu, jawaban yang benar adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Misal A = ( 4 3 ​ 7 5 ​ ) dan A T menyatakan transpos A , A − 1 menyatakan invers , ∣ A ∣ menyatakan determinan . Jika ∣ ∣ ​ A T ∣ ∣ ​ = k ∣ ∣ ​ A − 1 ∣ ∣ ​ maka k = ...

2

1.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia