Iklan

Pertanyaan

Jika 2 − 3 ​ ​ lo g 27 = p , maka ...

Jika , maka begin mathsize 14px style log presubscript presuperscript 9 invisible function application open parentheses 2 plus square root of 3 close parentheses equals end style...

  1. begin mathsize 14px style negative fraction numerator 3 over denominator 2 p end fraction end style

  2. begin mathsize 14px style fraction numerator 3 over denominator 2 p end fraction end style

  3. begin mathsize 14px style negative fraction numerator 2 over denominator 3 p end fraction end style

  4. begin mathsize 14px style fraction numerator 2 over denominator 3 p end fraction end style

  5. begin mathsize 14px style negative fraction numerator 2 p over denominator 3 end fraction end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

16

:

42

:

58

Klaim

Iklan

A. Nadhira

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Pembahasan

Perhatikan bahwa Kemudian perhatikan bahwa Sehingga

Perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell log presubscript presuperscript 2 minus square root of 3 end presuperscript invisible function application 27 end cell equals p row cell log presubscript presuperscript 2 minus square root of 3 end presuperscript invisible function application 3 cubed end cell equals p row cell 3 times log presubscript presuperscript 2 minus square root of 3 end presuperscript invisible function application 3 end cell equals p row cell log presubscript presuperscript 2 minus square root of 3 end presuperscript invisible function application 3 end cell equals cell p over 3 end cell end table end style

Kemudian perhatikan bahwa

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 2 plus square root of 3 end cell equals cell open parentheses 2 plus square root of 3 close parentheses times fraction numerator 2 minus square root of 3 over denominator 2 minus square root of 3 end fraction end cell row blank equals cell fraction numerator open parentheses 2 plus square root of 3 close parentheses open parentheses 2 minus square root of 3 close parentheses over denominator 2 minus square root of 3 end fraction end cell row blank equals cell fraction numerator 2 squared minus open parentheses square root of 3 close parentheses squared over denominator 2 minus square root of 3 end fraction end cell row blank equals cell fraction numerator 4 minus 3 over denominator 2 minus square root of 3 end fraction end cell row blank equals cell fraction numerator 1 over denominator 2 minus square root of 3 end fraction end cell row blank equals cell open parentheses 2 minus square root of 3 close parentheses to the power of negative 1 end exponent end cell end table end style

Sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell log presubscript presuperscript 9 invisible function application open parentheses 2 plus square root of 3 close parentheses end cell equals cell log presubscript presuperscript 3 squared end presuperscript invisible function application open parentheses 2 minus square root of 3 close parentheses to the power of negative 1 end exponent end cell row blank equals cell fraction numerator negative 1 over denominator 2 end fraction times log presubscript presuperscript 3 invisible function application open parentheses 2 minus square root of 3 close parentheses end cell row blank equals cell negative 1 half times fraction numerator 1 over denominator log presubscript presuperscript 2 minus square root of 3 end presuperscript invisible function application 3 end fraction end cell row blank equals cell negative 1 half times fraction numerator 1 over denominator p over 3 end fraction end cell row blank equals cell negative 1 half times 3 over p end cell row blank equals cell negative fraction numerator 3 over denominator 2 p end fraction end cell end table end style

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

18

Iklan

Pertanyaan serupa

Nilai-nilai a supaya fungsi terdefinisi untuk setiap x ∈ R adalah ....

19

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia