Iklan

Pertanyaan

In problem 3 to 6 ,match the solution region of each system oflinear inequalities with one of the four regions shown in the figure. Identify the corner points of each solution region. ⎩ ⎨ ⎧ ​ x + 3 y ≥ 18 2 x + y ≤ 16 x ≥ 0 y ≥ 0 ​

In problem  to , match the solution region of each system of linear inequalities with one of the four regions shown in the figure. Identify the corner points of each solution region.

 

 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

20

:

52

:

57

Iklan

I. Sutiawan

Master Teacher

Mahasiswa/Alumni Universitas Pasundan

Jawaban terverifikasi

Jawaban

daerah penyelesaian dari pertidaksamaan linear tersebut adalah daerah IV yang dibatasi oleh titik pojok ( 6 , 4 ) , ( 0 , 6 ) , ( 0 , 16 ) .

daerah penyelesaian dari pertidaksamaan linear tersebut adalah daerah IV yang dibatasi oleh titik pojok , .

Pembahasan

Langkah pertama adalah kita gambargaris: ⎩ ⎨ ⎧ ​ x + 3 y = 18 2 x + y = 16 x = 0 y = 0 ​ Seperti pada gambar berikut: Untuk menentukan daerah penyelesaian dua pertidaksamaan tersebut, kita gunakan uji titik untuk masing- masing pertidaksamaan seperti berikut: Daerah pertidaksamaan x + 3 y ≥ 18 . Pada gambar, garis x + 3 y = 18 terbagi menjadi 2 daerah yaitu daerah di atas garis dan di bawah garis, titik ( 0 , 0 ) terletak di bawah garis, sehingga melalui uji titik, daerah penyelesaian x + 3 y ≥ 18 adalah: 0 + 3 ( 0 ) 0 ​ ≥ ≥ ​ 18 18 ​ Karena menghasilkan bentuk yang salah, maka daerah penyelesaiannya bukan daerah bwah, melainkan daerah di atas garis x + 3 y = 18 . Daerah pertidaksamaan 2 x + y ≤ 16 . Pada gambar, garis 2 x + y = 16 terbagi menjadi 2 daerah yaitu daerah di atas garis dan di bawah garis, titik ( 0 , 0 ) terletak di bawah garis, sehingga melalui uji titik, daerah penyelesaian 2 x + y ≤ 16 adalah: 2 x + y 2 ( 0 ) + 0 0 ​ ≤ ≤ ≤ ​ 16 16 16 ​ Karena menghasilkan bentuk yang benar, maka daerah penyelesaiannya adalah daerah di bawahgaris 2 x + y = 16 . Daerah pertidaksamaan x ≥ 0 . Daerah penyelesaian dari pertidaksamaan x ≥ 0 adalah daerah yang berada di kanan garis x = 0 atau sumbu y . Daerah pertidaksamaan y ≥ 0 . Daerah penyelesaian dari pertidaksamaan y ≥ 0 adalah daerah yang berada di atasgaris y = 0 atau sumbu x . Sehingga, daerah penyelesaian dari keduapertidaksamaan tersebut adalah irisan daerah dari keduanya, yaitu: Dengan demikian, daerah penyelesaian dari pertidaksamaan linear tersebut adalah daerah IV yang dibatasi oleh titik pojok ( 6 , 4 ) , ( 0 , 6 ) , ( 0 , 16 ) .

Langkah pertama adalah kita gambar garis:

 

Seperti pada gambar berikut:

Untuk menentukan daerah penyelesaian dua pertidaksamaan tersebut, kita gunakan uji titik untuk masing- masing pertidaksamaan seperti berikut:

  • Daerah pertidaksamaan .

Pada gambar, garis  terbagi menjadi 2 daerah yaitu daerah di atas garis dan di bawah garis, titik  terletak di bawah garis, sehingga melalui uji titik, daerah penyelesaian  adalah:

      

Karena menghasilkan bentuk yang salah, maka daerah penyelesaiannya bukan daerah bwah, melainkan daerah di atas garis .

  • Daerah pertidaksamaan .

Pada gambar, garis  terbagi menjadi 2 daerah yaitu daerah di atas garis dan di bawah garis, titik  terletak di bawah garis, sehingga melalui uji titik, daerah penyelesaian  adalah:

      

Karena menghasilkan bentuk yang benar, maka daerah penyelesaiannya adalah daerah di bawah garis .

  • Daerah pertidaksamaan .

Daerah penyelesaian dari pertidaksamaan  adalah daerah yang berada di kanan garis  atau sumbu .

  • Daerah pertidaksamaan .

Daerah penyelesaian dari pertidaksamaan  adalah daerah yang berada di atas garis  atau sumbu .

Sehingga, daerah penyelesaian dari kedua pertidaksamaan tersebut adalah irisan daerah dari keduanya, yaitu:

Dengan demikian, daerah penyelesaian dari pertidaksamaan linear tersebut adalah daerah IV yang dibatasi oleh titik pojok , .

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!