Iklan

Pertanyaan

Diketahui f ( x ) = a x + a − x dengan a > 0 . Buktikan bahwa f ( x + 1 ) + f ( x − 1 ) = ( a + a 1 ​ ) f ( x )

Diketahui  dengan . Buktikan bahwa

   

  1. ... 

  2. ... 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

01

:

12

:

23

Iklan

F. Ayudhita

Master Teacher

Jawaban terverifikasi

Jawaban

terbukti bahwa

terbukti bahwa begin mathsize 14px style bold italic f begin bold style left parenthesis x plus 1 right parenthesis end style bold plus bold italic f begin bold style left parenthesis x minus 1 right parenthesis end style bold equals begin bold style left parenthesis a plus 1 over a right parenthesis end style bold italic f begin bold style left parenthesis x right parenthesis end style end style 

Pembahasan

Pembahasan
lock

Ingat! Akan dibuktikan Sehingga Jadi, terbukti bahwa

Ingat!

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell a to the power of negative m end exponent end cell equals cell 1 over a to the power of m end cell row cell a to the power of m plus n end exponent end cell equals cell a to the power of m times a to the power of n end cell row blank blank blank end table end style 

Akan dibuktikan begin mathsize 14px style f open parentheses x plus 1 close parentheses plus f open parentheses x minus 1 close parentheses equals open parentheses a plus 1 over a close parentheses f open parentheses x close parentheses end style 

table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses x close parentheses end cell equals cell a to the power of x plus a to the power of negative x end exponent end cell row cell f open parentheses x plus 1 close parentheses end cell equals cell a to the power of x plus 1 end exponent plus a to the power of negative open parentheses x plus 1 close parentheses end exponent end cell row blank equals cell a to the power of x plus 1 end exponent plus a to the power of negative x minus 1 end exponent end cell row blank equals cell a to the power of x times a plus a to the power of negative x end exponent times a to the power of negative 1 end exponent end cell row cell f open parentheses x minus 1 close parentheses end cell equals cell a to the power of x minus 1 end exponent plus a to the power of negative open parentheses x minus 1 close parentheses end exponent end cell row blank equals cell a to the power of x minus 1 end exponent plus a to the power of negative x plus 1 end exponent end cell row blank equals cell a to the power of x times a to the power of negative 1 end exponent plus a to the power of negative x end exponent times a end cell end table  

Sehingga

 begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses x plus 1 close parentheses plus f open parentheses x minus 1 close parentheses end cell equals cell a to the power of x times a plus a to the power of negative x end exponent times a to the power of negative 1 end exponent plus a to the power of x times a to the power of negative 1 end exponent plus a to the power of negative x end exponent times a end cell row blank equals cell a times a to the power of x plus a times a to the power of negative x end exponent plus a to the power of negative 1 end exponent times a to the power of x plus a to the power of negative 1 end exponent times a to the power of negative x end exponent end cell row blank equals cell open parentheses a plus a to the power of negative 1 end exponent close parentheses open parentheses a to the power of x plus a to the power of negative x end exponent close parentheses end cell row blank equals cell open parentheses a plus 1 over a close parentheses f open parentheses x close parentheses end cell end table end style   

Jadi, terbukti bahwa begin mathsize 14px style bold italic f begin bold style left parenthesis x plus 1 right parenthesis end style bold plus bold italic f begin bold style left parenthesis x minus 1 right parenthesis end style bold equals begin bold style left parenthesis a plus 1 over a right parenthesis end style bold italic f begin bold style left parenthesis x right parenthesis end style end style 

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!