Iklan

Pertanyaan

Ayo, membuktikan Teorema Sisa 4! Sisa pembagian polinomial f ( x ) oleh ( x − k 1 ​ ) ( x − k 2 ​ ) adalah s ( x ) = k 1 ​ − k 2 ​ x − k 2 ​ ​ × f ( k 1 ​ ) + k 2 ​ − k 1 ​ x − k 1 ​ ​ × f ( k 2 ​ ) . Bukti: Misalkan polinomal dibagi memberikan hasil bagi h ( x ) dan sisa s ( x ) = m x + n . Polinomial dapat dituliskan sebagai berikut. f ( x ) = ( x − k 1 ​ ) ( x − k 2 ​ ) h ( x ) + m x + ... Untuk x = k 1 ​ : f ( k 1 ​ ) ​ = = = = ​ ( k 1 ​ − k 1 ​ ) ( k 1 ​ − k 2 ​ ) h ( k 1 ​ ) + m k 1 ​ + n 0 × ( k 1 ​ − k 2 ​ ) X h ( k 1 ​ ) + ... + n ... + m k 1 ​ + n m k 1 ​ + ... ​ ...(1) Untuk x = k 2 ​ : f ( k 2 ​ ) ​ = = = = ​ ( k 2 ​ − k 1 ​ ) ( k 2 ​ − k 2 ​ ) h ( k 2 ​ ) + m k 2 ​ + n ( k 2 ​ − ... ) × 0 × h ( ... ) + m k 2 ​ + n ... + m k 2 ​ + n ... + n ​ ...(2) Eliminasi n pada persamaan (1) dan (2). f ( k 1 ​ ) − ... = m ( k 1 ​ − k 2 ​ ) ⇔ m = k 1 ​ − k 2 ​ ... − f ( k 2 ​ ) ​ Jumlahkan persamaan (1) dan (2) untuk memperoleh nilai n . f ( k 1 ​ ) + f ( k 2 ​ ) = m ( k 1 ​ + k 2 ​ ) + ... ⇔ 2 n = f ( k 1 ​ ) + ... − m ( k 1 ​ + ... ) ⇔ 2 n = ... + f ( k 2 ​ ) − k 1 ​ − k 2 ​ f ( k 1 ​ ) − f ( k 2 ​ ) ​ ( k 1 ​ + k 2 ​ ) ⇔ 2 n = k 1 ​ − k 2 ​ ( f ( k 1 ​ ) + ... ) ( k 1 ​ − k 2 ​ ) − ( ... − f ( k 2 ​ )) ( k 1 ​ + k 2 ​ ) ​ ⇔ 2 n = k 1 ​ − k 2 ​ 2 k 1 ​ f ( k 2 ​ ) − ... ​ ⇔ n = k 1 ​ − k 2 ​ ... − k 2 ​ f ( k 1 ​ ) ​ Substitusikan nilai m dan ke diperoleh: s ( x ) = k 1 ​ − k 2 ​ f ( k 1 ​ ) − f ( k 2 ​ ) ​ x + k 1 ​ − k 2 ​ k 1 ​ f ( k 2 ​ ) − k 2 ​ f ( k 1 ​ ) ​ = x f ( k 1 ​ ) − x f ( k 2 ​ ) + ... − k 2 ​ f ( k 2 ​ ) ​ = k 1 ​ − k 2 ​ ( x − k 2 ​ ) f ( k 1 ​ ) + ( ... − x ) f ( k 2 ​ ) ​ = k 1 ​ − k 2 ​ ( x − ... ) f ( k 1 ​ ) ​ + k 1 ​ − k 2 ​ ( k 1 ​ − x ) f ( k 2 ​ ) ​ = k 1 ​ − k 2 ​ x − k 2 ​ ​ × f ( k 1 ​ ) + k 1 ​ − k 2 ​ x − k 1 ​ ​ × f ( k 2 ​ ) ( terbukti )

Ayo, membuktikan Teorema Sisa 4!

Sisa pembagian polinomial  oleh  adalah

Bukti:
Misalkan polinomal undefined dibagi undefined memberikan hasil bagi  dan sisa .
Polinomial undefined dapat dituliskan sebagai berikut. 
 

Untuk : ...(1)

Untuk :...(2)
Eliminasi n pada persamaan (1) dan (2). 

Error converting from MathML to accessible text.

 

Jumlahkan persamaan (1) dan (2) untuk memperoleh nilai .

Error converting from MathML to accessible text.

  

Substitusikan nilai  dan undefined ke undefined diperoleh:

 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

07

:

42

:

02

Klaim

Iklan

L. Indah

Master Teacher

Mahasiswa/Alumni Universitas Siliwangi

Jawaban terverifikasi

Pembahasan

Pembahasan
lock

Ayo, membuktikan Teorema Sisa 4! Sisa pembagian polinomial oleh adalah . Bukti: Misalkan polinomal dibagi memberikan hasil bagi dan sisa . Polinomial dapat dituliskan sebagai berikut. Untuk : ...(1) Untuk : ...(2) Eliminasi n pada persamaan (1) dan (2). Jumlahkan persamaan (1) dan (2) untuk memperoleh nilai . Substitusikan nilai dan ke diperoleh: (Terbukti)

Ayo, membuktikan Teorema Sisa 4!

Sisa pembagian polinomial undefined oleh begin mathsize 14px style left parenthesis x minus k subscript 1 right parenthesis left parenthesis x minus k subscript 2 right parenthesis end style adalah begin mathsize 14px style s left parenthesis x right parenthesis equals fraction numerator x minus k subscript 2 over denominator k subscript 1 minus k subscript 2 end fraction cross times f left parenthesis k subscript 1 right parenthesis plus fraction numerator x minus k subscript 1 over denominator k subscript 2 minus k subscript 1 end fraction cross times f left parenthesis k subscript 2 right parenthesis end style

Bukti:
Misalkan polinomal undefined dibagi undefined memberikan hasil bagi begin mathsize 14px style h left parenthesis x right parenthesis end style dan sisa begin mathsize 14px style s left parenthesis x right parenthesis equals m x plus n end style.
Polinomial undefined dapat dituliskan sebagai berikut. 
 begin mathsize 14px style f left parenthesis x right parenthesis equals open parentheses x minus k subscript 1 close parentheses open parentheses x minus k subscript 2 close parentheses h left parenthesis x right parenthesis plus m x plus n end style 

Untuk begin mathsize 14px style x equals k subscript 1 end style: begin mathsize 14px style f left parenthesis k subscript 1 right parenthesis equals open parentheses k subscript 1 minus k subscript 1 close parentheses left parenthesis k subscript 1 minus k subscript 2 right parenthesis h left parenthesis k subscript 1 right parenthesis plus m k subscript 1 plus n space space space space space space space equals 0 cross times left parenthesis k subscript 1 minus k subscript 2 right parenthesis cross times h left parenthesis k subscript 1 right parenthesis plus m k subscript 1 plus n space space space space space space space equals 0 plus m k subscript 1 plus n space space space space space space space equals m k subscript 1 plus n end style...(1)

Untuk begin mathsize 14px style x equals k subscript 2 end style:begin mathsize 14px style f left parenthesis k subscript 2 right parenthesis equals left parenthesis k subscript 2 minus k subscript 1 right parenthesis left parenthesis k subscript 2 minus k subscript 2 right parenthesis h left parenthesis k subscript 2 right parenthesis plus m k subscript 2 plus n space space space space space space space equals left parenthesis k subscript 2 minus k subscript 1 right parenthesis cross times 0 cross times h left parenthesis k subscript 2 right parenthesis plus m k subscript 2 plus n space space space space space space space equals 0 plus space m k subscript 2 plus n space space space space space space space equals m k subscript 2 plus n end style...(2)
Eliminasi n pada persamaan (1) dan (2). 

 Error converting from MathML to accessible text.

begin mathsize 14px style f left parenthesis k subscript 1 right parenthesis minus f left parenthesis k subscript 2 right parenthesis equals m left parenthesis k subscript 1 minus k subscript 2 right parenthesis left right double arrow m equals fraction numerator f left parenthesis k subscript 1 right parenthesis minus f left parenthesis k subscript 2 right parenthesis over denominator left parenthesis k subscript 1 minus k subscript 2 right parenthesis end fraction end style

Jumlahkan persamaan (1) dan (2) untuk memperoleh nilai begin mathsize 14px style n end style.

Error converting from MathML to accessible text.

begin mathsize 14px style f left parenthesis k subscript 1 right parenthesis plus f left parenthesis k subscript 2 right parenthesis equals m left parenthesis k subscript 1 plus k subscript 2 right parenthesis plus 2 n end style 

begin mathsize 14px style left right double arrow 2 n equals f left parenthesis k subscript 1 right parenthesis plus f left parenthesis k subscript 2 right parenthesis minus m left parenthesis k subscript 1 plus k subscript 2 right parenthesis end style

begin mathsize 14px style left right double arrow 2 n equals f left parenthesis k subscript 1 right parenthesis plus f left parenthesis k subscript 2 right parenthesis minus fraction numerator f left parenthesis k subscript 1 right parenthesis minus f left parenthesis k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction left parenthesis k subscript 1 plus k subscript 2 right parenthesis end style

begin mathsize 14px style left right double arrow 2 n equals fraction numerator left parenthesis f left parenthesis k subscript 1 right parenthesis plus f left parenthesis k subscript 2 right parenthesis right parenthesis left parenthesis k subscript 1 minus k subscript 2 right parenthesis minus left parenthesis f left parenthesis k subscript 1 right parenthesis minus f left parenthesis k subscript 2 right parenthesis right parenthesis left parenthesis k subscript 1 plus k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction left right double arrow 2 n equals fraction numerator k subscript 1 f left parenthesis k subscript 1 right parenthesis plus k subscript 1 f left parenthesis k subscript 2 right parenthesis minus k subscript 2 f left parenthesis k subscript 1 right parenthesis minus k subscript 2 f left parenthesis k subscript 2 right parenthesis minus k subscript 1 f left parenthesis k subscript 1 right parenthesis plus k subscript 1 f left parenthesis k subscript 2 right parenthesis minus k subscript 2 f left parenthesis k subscript 1 right parenthesis plus k subscript 2 f left parenthesis k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style 

begin mathsize 14px style left right double arrow 2 n equals fraction numerator 2 k subscript 1 f left parenthesis k subscript 2 right parenthesis minus 2 k subscript 2 f left parenthesis k subscript 1 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction left right double arrow n equals fraction numerator k subscript 1 f left parenthesis k subscript 2 right parenthesis minus k subscript 2 f left parenthesis k subscript 1 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style 

Substitusikan nilai begin mathsize 14px style m end style dan undefined ke undefined diperoleh:

begin mathsize 14px style s left parenthesis x right parenthesis equals begin inline style fraction numerator f left parenthesis k subscript 1 right parenthesis minus f left parenthesis k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style x plus begin inline style fraction numerator k subscript 1 f left parenthesis k subscript 2 right parenthesis minus k subscript 2 f left parenthesis k subscript 1 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style space space space space space space space equals begin inline style fraction numerator x f left parenthesis k subscript 1 right parenthesis minus x f left parenthesis k subscript 2 right parenthesis plus k subscript 1 f left parenthesis k subscript 2 right parenthesis minus k subscript 2 f left parenthesis k subscript 1 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style space space space space space space space equals begin inline style fraction numerator left parenthesis x minus k subscript 2 right parenthesis f left parenthesis k subscript 1 right parenthesis plus left parenthesis k subscript 1 minus x right parenthesis f left parenthesis k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style space space space space space space space equals begin inline style fraction numerator left parenthesis x minus k subscript 2 right parenthesis f left parenthesis k subscript 1 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style plus begin inline style fraction numerator left parenthesis k subscript 1 minus x right parenthesis f left parenthesis k subscript 2 right parenthesis over denominator k subscript 1 minus k subscript 2 end fraction end style space space space space space space space equals begin inline style fraction numerator x minus k subscript 2 over denominator k subscript 1 minus k subscript 2 end fraction end style cross times f left parenthesis k subscript 1 right parenthesis plus begin inline style fraction numerator left parenthesis x minus k subscript 1 right parenthesis over denominator k subscript 2 minus k subscript 1 end fraction end style cross times f left parenthesis k subscript 2 right parenthesis end style

(Terbukti)

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

9

Iklan

Pertanyaan serupa

Tentukan hasil bagi dan sisa pembagian suku banyak x 3 + 2 x 2 − 6 x + 7 dibagi x 2 − 3 x + 2 .

8

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia