Iklan

Pertanyaan

∫ sin 2 x sin 4 x dx = ....

   

  1. begin mathsize 14px style negative 3 left parenthesis sin space 2 straight x space cos space 4 straight x plus sin thin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end style  

  2. begin mathsize 14px style negative 1 third left parenthesis sin space 2 straight x space cos space 4 straight x plus sin thin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end style  

  3. begin mathsize 14px style 1 third left parenthesis sin space 2 straight x space cos space 4 straight x minus sin thin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end style     

  4. begin mathsize 14px style 3 left parenthesis sin space 2 straight x space cos space 4 straight x minus sin thin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end style   

  5. undefined  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

13

:

16

:

07

Klaim

Iklan

F. Freelancer10

Master Teacher

Jawaban terverifikasi

Jawaban

jawabannya adalah B.

jawabannya adalah B.

Pembahasan

Kita cari hasil integral di atas dengan menggunakan integral parsial. Misalkan u = sin ⁡2x dan , maka dan sehingga Selanjutnya, kita gunakan metode parsial untuk mencari hasil integral Misalkan u = cos ⁡2x dan , maka dan Sehingga Jadi, jawabannya adalah B.

Kita cari hasil integral di atas dengan menggunakan integral parsial.
Misalkan u = sin ⁡2x dan begin mathsize 14px style dv over dx equals sin space 4 straight x end style, maka

begin mathsize 14px style du over dx equals 2 space cos space 2 straight x space semicolon end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx end cell row blank equals cell integral sin space 4 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell negative 1 fourth cos space 4 straight x plus straight C end cell end table end style

sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell sin space 2 straight x times open parentheses negative 1 fourth cos space 4 straight x close parentheses minus integral open parentheses negative 1 fourth cos space 4 straight x close parentheses bullet left parenthesis 2 space cos space 2 straight x right parenthesis space dx end cell row blank equals cell negative 1 fourth sin space 2 straight x space cos space 4 straight x plus 1 half integral cos space 2 straight x space cos space 4 straight x space dx end cell end table end style

Selanjutnya, kita gunakan metode parsial untuk mencari hasil integralbegin mathsize 14px style integral cos space 2 straight x space cos space 4 straight x space dx end style
Misalkan u = cos ⁡2x dan begin mathsize 14px style dv over dx equals cos thin space 4 straight x end style, maka

begin mathsize 14px style du over dx equals negative 2 space sin space 2 straight x end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx end cell row blank equals cell integral cos space 4 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell 1 fourth sin space 4 straight x plus straight C end cell end table end style

Sehingga

 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 fourth sin space 2 straight x space cos space 4 straight x plus 1 half integral cos space 2 straight x space cos space 4 straight x space dx end cell row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 fourth sin space 2 straight x space cos space 4 straight x plus 1 half open parentheses open parentheses negative 2 space sin space 2 straight x close parentheses times 1 fourth sin space 4 straight x minus integral 1 fourth space sin space 4 straight x times left parenthesis negative 2 space sin space 2 straight x right parenthesis space dx close parentheses plus straight C end cell row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 fourth space sin space 2 straight x space cos space 4 straight x minus 1 fourth space sin space 2 straight x space sin space 4 straight x plus 1 fourth integral sin space 2 straight x space sin space 4 straight x space dx plus straight C end cell row cell integral sin space 2 straight x space sin space 4 straight x space dx minus 1 fourth integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 fourth space sin thin space 2 straight x space cos space 4 straight x minus 1 fourth space sin space 2 straight x space sin space 4 straight x plus straight C end cell row cell 3 over 4 integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 fourth left parenthesis sin space 2 straight x space cos space 4 straight x plus sin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end cell row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell negative 1 third left parenthesis sin space 2 straight x space cos space 4 straight x plus sin space 2 straight x space sin space 4 straight x right parenthesis plus straight C end cell end table end style

Jadi, jawabannya adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

6

Iklan

Pertanyaan serupa

Nilai dari ∫ − π π ​ x sin ( x − 2 π ​ ) d x adalah ....

12

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia