Iklan

Pertanyaan

Nilai dari ∫ cos x cos 2 x dx adalah ....

Nilai dari  adalah ....  

  1.   begin mathsize 14px style 1 third left parenthesis 2 space cos space straight x space sin space 2 straight x plus sin space straight x space cos space 2 straight x right parenthesis plus straight C end style   

  2. begin mathsize 14px style negative 3 left parenthesis 2 space cos space straight x space sin space 2 straight x minus sin space straight x space cos space 2 straight x right parenthesis plus straight C end style   

  3. begin mathsize 14px style negative 1 third left parenthesis 2 space cos space straight x space sin space 2 straight x plus sin space straight x space cos space 2 straight x right parenthesis plus straight C end style  

  4. begin mathsize 14px style 3 left parenthesis 2 space cos space straight x space sin space 2 straight x plus sin space straight x space cos space 2 straight x right parenthesis plus straight C end style  

  5. begin mathsize 14px style 1 third left parenthesis 2 space cos space straight x space sin space 2 straight x minus sin space straight x space cos space 2 straight x right parenthesis plus straight C end style  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

09

:

50

:

55

Klaim

Iklan

F. Freelancer10

Master Teacher

Jawaban terverifikasi

Jawaban

jawabannya adalah E.

jawabannya adalah E.

Pembahasan

Kita cari hasil integral di atas dengan menggunakan integral parsial. Misalkan u = cos ⁡x dan , maka dan sehingga Selanjutnya, kita gunakan metode parsial untuk mencari hasil integral Misalkan u = sin ⁡x dan , maka dan sehingga Jadi, jawabannya adalah E.

Kita cari hasil integral di atas dengan menggunakan integral parsial.
Misalkan u = cos ⁡x dan begin mathsize 14px style dv over dx equals cos space 2 straight x end style, maka

begin mathsize 14px style du over dx equals negative sin space straight x space semicolon end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx end cell row blank equals cell integral cos space 2 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell 1 half space sin space 2 straight x plus straight C end cell end table end style

sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral cos space straight x space cos space 2 straight x space dx end cell equals cell cos space straight x times 1 half space sin space 2 straight x minus integral 1 half space sin space 2 straight x times left parenthesis negative sin space straight x right parenthesis space dx end cell row blank equals cell 1 half space cos space straight x space sin space 2 straight x plus 1 half integral sin space straight x space sin space 2 straight x space dx end cell end table end style

Selanjutnya, kita gunakan metode parsial untuk mencari hasil integral begin mathsize 14px style integral sin space straight x space sin space 2 straight x space dx end style
Misalkan u = sin ⁡x dan begin mathsize 14px style dv over dx equals sin space 2 straight x end style, maka

begin mathsize 14px style du over dx equals cos space straight x end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx space end cell row blank equals cell integral sin space 2 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell negative 1 half space cos space 2 straight x plus straight C end cell end table end style

sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral cos space straight x space cos space 2 straight x space dx end cell equals cell 1 half cos space straight x space sin space 2 straight x plus 1 half integral sin space straight x space sin space 2 straight x space dx end cell row cell integral cos space straight x space cos 2 straight x space dx end cell equals cell 1 half cos space straight x space sin space 2 straight x plus 1 half open parentheses sin space straight x times open parentheses negative 1 half space cos space 2 straight x close parentheses minus integral open parentheses negative 1 half space cos space 2 straight x close parentheses times cos space straight x space dx close parentheses plus straight C end cell row cell integral cos space straight x space cos space 2 straight x space dx end cell equals cell 1 half cos space straight x space sin space 2 straight x minus 1 fourth sin space straight x space cos space 2 straight x plus 1 fourth integral cos space straight x space cos space 2 straight x space dx plus straight C end cell row cell integral cos space straight x space cos space 2 straight x space dx minus 1 fourth integral cos space straight x space cos space 2 straight x space dx end cell equals cell 1 half space cos space straight x space sin space 2 straight x minus 1 fourth space sin space straight x space cos space 2 straight x plus straight C end cell row cell 3 over 4 integral cos space straight x space cos space 2 straight x space dx end cell equals cell 1 fourth left parenthesis 2 space cos space straight x space sin space 2 straight x minus sin space straight x space cos space 2 straight x right parenthesis plus straight C end cell row cell integral sin space 2 straight x space sin space 4 straight x space dx end cell equals cell 1 third left parenthesis 2 space cos space straight x space sin space 2 straight x minus sin space straight x space cos space 2 straight x right parenthesis plus straight C end cell end table end style

Jadi, jawabannya adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

∫ sin 2 x sin 4 x dx = ....

4

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia