Iklan

Pertanyaan

Tunjukkan berlakunya sifat komutatif pada operasi fungsi komposisi dengan menjawab pertanyaan-pertanyaan berikut! Diberikan f ( x ) = x 2 − 3 x + 5 dan g ( x ) = 2 x − 1 . a. Tentukan fungsi komposisi f ∘ g ! b.Tentukan fungsi komposisi g ∘ f ! c. Samakah dengan ?

Tunjukkan berlakunya sifat komutatif pada operasi fungsi komposisi dengan menjawab pertanyaan-pertanyaan berikut!

Diberikan  dan .

a. Tentukan fungsi komposisi !

b. Tentukan fungsi komposisi !

c. Samakah size 14px f size 14px ring operator size 14px g dengan begin mathsize 14px style g ring operator f end style?

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

17

:

18

:

29

Klaim

Iklan

I. Kumaralalita

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Jawaban

dapat disimpulkan pula bahwa pada operasi fungsi komposisi tidak berlaku sifat komutatif.

dapat disimpulkan pula bahwa pada operasi fungsi komposisi tidak berlaku sifat komutatif.

Pembahasan

Diketahui dan . Sehingga komposisi dari kedua fungsi tersebut adalah : dan Dengan demikian,berdasarkan hasil perhitungan di atas, maka dapat disimpulkan bahwa . Jadi, dapat disimpulkan pula bahwa pada operasi fungsi komposisi tidak berlaku sifat komutatif.

Diketahui begin mathsize 14px style f left parenthesis x right parenthesis equals x squared minus 3 x plus 5 end style dan size 14px g size 14px left parenthesis size 14px x size 14px right parenthesis size 14px equals size 14px 2 size 14px x size 14px minus size 14px 1. Sehingga komposisi dari kedua fungsi tersebut adalah :

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f ring operator g end cell equals cell left parenthesis f ring operator g right parenthesis left parenthesis x right parenthesis end cell row cell f ring operator g end cell equals cell f left parenthesis g left parenthesis x right parenthesis right parenthesis end cell row cell f ring operator g end cell equals cell f left parenthesis 2 x minus 1 right parenthesis end cell row cell f ring operator g end cell equals cell left parenthesis 2 x minus 1 right parenthesis squared minus 3 left parenthesis 2 x minus 1 right parenthesis plus 5 end cell row cell f ring operator g end cell equals cell 4 x squared minus 4 x plus 1 minus 6 x plus 3 plus 5 end cell row cell f ring operator g end cell equals cell 4 x squared minus 10 x plus 9 end cell end table end style 

dan 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell g ring operator f end cell equals cell left parenthesis g ring operator f right parenthesis left parenthesis x right parenthesis end cell row cell g ring operator f end cell equals cell g left parenthesis f left parenthesis x right parenthesis right parenthesis end cell row cell g ring operator f end cell equals cell g left parenthesis x squared minus 3 x plus 5 right parenthesis end cell row cell g ring operator f end cell equals cell 2 left parenthesis x squared minus 3 x plus 5 right parenthesis minus 1 end cell row cell g ring operator f end cell equals cell 2 x squared minus 6 x plus 10 minus 1 end cell row cell g ring operator f end cell equals cell 2 x squared minus 6 x plus 9 end cell end table end style 

Dengan demikian, berdasarkan hasil perhitungan di atas, maka dapat disimpulkan bahwa size 14px f size 14px ring operator size 14px gbegin mathsize 14px style not equal to end stylebegin mathsize 14px style g ring operator f end style.

Jadi, dapat disimpulkan pula bahwa pada operasi fungsi komposisi tidak berlaku sifat komutatif.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Diketahui f ( x ) = 3 x − 4 dan g ( x ) = 2 x + p . Jika ( f ∘ g ) ( x ) = ( g ∘ f ) ( x ) , maka nilai p 2 = ...

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia