Ingat rumus perkalian trigonometri
2 sinα sinβ2 cosα cosβ==cos(α−β)−cos(α+β)cos(α+β)+cos(α−β)
ingat tanα=cosαsinα, sehingga di dapat
tan6∘ tan42∘ tan66∘ tan78∘=cos6∘ cos42∘ cos66∘ cos78∘sin6∘ sin42∘ sin66∘ sin78∘
Mencari sin6∘ sin42∘ sin66∘ sin78∘
sin42∘ sin78∘ sin6∘ sin66∘=================21 (2 sin42∘ sin78∘)21(cos(42∘−78∘)−cos(42∘+78∘))21(cos(−36∘)−cos(120∘)) ingat cos(−α)=cosα21(cos36∘−(−21))21(cos36∘+21) ingat cos36∘=45+121(45+1+21)21(45+1+42)2×45+385+321 (2 sin6∘ sin66∘)21(cos(6∘−66∘)−cos(6∘+66∘))21(cos(−60∘)−cos72∘) ingat cos(−α)=cosα21(21−cos72∘) ingat cos72∘=45−121(21−45−1)21(42−45−1)2×43−583−5
sehingga diperoleh
sin6∘ sin42∘ sin66∘ sin78∘======83+5×83−5 8(3+5)×8(3−5)6432−(5)2649−5644161
Mencari cos6∘ cos42∘ cos66∘ cos78∘
cos6∘ cos42∘ cos66∘ cos78∘=21(2 cos6∘ cos66∘) 21(2 cos42∘ cos78∘)=41(cos(6∘ +66∘)+cos(6∘ −66∘))(cos(42∘ +78∘)+cos(42∘ −78∘))=41(cos72∘+cos(−60∘)) (cos120∘+cos(−36∘)) ingat cos(−α)=cosα=41(cos72∘+cos60∘) (cos120∘+cos36∘) =41(cos72∘+21) (−21+cos36∘)=41(−21cos72∘+cos72∘cos36∘−41+21cos36∘)=81(−cos72∘+2cos72∘cos36∘−21+cos36∘)=81(−cos72∘+(cos(72∘ +36∘)+cos(72∘ −36∘))−21+cos36∘)=81(−cos72∘+cos108∘+cos36∘−21+cos36∘) ingat cos(180∘−α)=−cosα=81(−cos72∘+cos(180∘−72∘)+2cos36∘−21)=81(−cos72∘−cos72∘+2cos36∘−21)=81(−2cos72∘+2cos36∘−21)=81(−2cos72∘+2cos36∘)×cos18∘cos18∘−161=81cos18∘(−2cos72∘cos18∘+2cos36∘cos18∘)−161=−161+81cos18∘(−(cos(72∘ +18∘)+cos(72∘ −18∘)))+cos18∘(cos(36∘ +18∘)+cos(36∘ −18∘))=−161+81cos18∘(−(cos90∘+cos54∘)+(cos54∘+cos18∘))=−161+81cos18∘(−0−cos54∘+cos54∘+cos18∘)=−161+81cos18∘cos18∘=−161+81=16−1+2=161
Sehingga didapat
tan6∘ tan42∘ tan66∘ tan78∘===cos6∘ cos42∘ cos66∘ cos78∘sin6∘ sin42∘ sin66∘ sin78∘1611611
Dengan demikian, terbukti bahwa tan6∘ tan42∘ tan66∘ tan78∘=1.