Roboguru
SD

Tentukan penyelesaian persamaan berikut. b. 2log (x+7)+2log (x+6)+21​log (x+10)=0

Pertanyaan

Tentukan penyelesaian persamaan berikut.

b. log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses plus log presuperscript begin inline style 1 half end style end presuperscript space open parentheses x plus 10 close parentheses equals 0  

S. Amamah

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Pembahasan

Ingat sifat bentuk logaritma:

table attributes columnalign right center left columnspacing 0px end attributes row cell log presuperscript a space b times log presuperscript a space c end cell equals cell log presuperscript a space b c end cell row cell log presuperscript a to the power of n end presuperscript space b to the power of m end cell equals cell m over n space log presuperscript a space b end cell end table 

Ingat ada persamaan logaritma berlaku jika log presuperscript a space f open parentheses x close parentheses equals log presuperscript a space g open parentheses x close parentheses comma space a greater than 0 dan a not equal to 1 maka f open parentheses x close parentheses equals g open parentheses x close parentheses dengan syarat f open parentheses x close parentheses greater than 0 dan g open parentheses x close parentheses greater than 0

Diketahui log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses plus log presuperscript begin inline style 1 half end style end presuperscript space open parentheses x plus 10 close parentheses equals 0 maka:

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses plus log presuperscript begin inline style 1 half end style end presuperscript space open parentheses x plus 10 close parentheses end cell equals 0 row cell log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses plus log presuperscript begin inline style 2 to the power of negative 1 end exponent end style end presuperscript space open parentheses x plus 10 close parentheses end cell equals 0 row cell log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses plus open parentheses fraction numerator 1 over denominator negative 1 end fraction close parentheses log presuperscript begin inline style 2 end style end presuperscript space open parentheses x plus 10 close parentheses end cell equals 0 row cell log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses minus log presuperscript begin inline style 2 end style end presuperscript space open parentheses x plus 10 close parentheses end cell equals 0 row cell log presuperscript 2 space open parentheses x plus 7 close parentheses plus log presuperscript 2 space open parentheses x plus 6 close parentheses end cell equals cell log presuperscript begin inline style 2 end style end presuperscript space open parentheses x plus 10 close parentheses end cell row cell log presuperscript 2 space open parentheses x plus 7 close parentheses open parentheses x plus 6 close parentheses end cell equals cell log presuperscript 2 space open parentheses x plus 10 close parentheses end cell row cell log presuperscript 2 space open parentheses x squared plus 13 x plus 42 close parentheses end cell equals cell log presuperscript 2 space open parentheses x plus 10 close parentheses end cell row cell x squared plus 13 x plus 42 end cell equals cell x plus 10 end cell row cell x squared plus 13 x minus x plus 42 minus 10 end cell equals 0 row cell x squared plus 12 x plus 32 end cell equals 0 row cell open parentheses x plus 8 close parentheses open parentheses x plus 4 close parentheses end cell equals 0 end table end style   

diperoleh nilai yang memenuhi x equals negative 8 atau x equals negative 4 

Syarat numerus 1)

table attributes columnalign right center left columnspacing 0px end attributes row cell x plus 7 end cell greater than 0 row x greater than cell negative 7 end cell end table

Syarat numerus 3)

table attributes columnalign right center left columnspacing 0px end attributes row cell x plus 6 end cell greater than 0 row x greater than cell negative 6 end cell end table 

Syarat numerus 2)

table attributes columnalign right center left columnspacing 0px end attributes row cell x plus 10 end cell greater than 0 row x greater than cell negative 10 end cell end table  

Dari syarat numerus mengharuskan x greater than negative 6 maka nilai yang memenuhi adalah x equals negative 4.

Dengan demikian himpunan penyelesaiany adalah open curly brackets negative 4 close curly brackets.

 

34

0.0 (0 rating)

Pertanyaan serupa

Jika 16log (x−2)−16log (x2−4x+4)1​=−2, tentukan nilai x yang memenuhi persamaan tersebut.

33

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia