Iklan

Pertanyaan

Tentukan nilai x yang memenuhi persamaan: sin ( 2 2016 x ​ ) 1 ​ = 2 2016 2 ​ cos ( 2 x ​ ) ⋅ cos ( 4 x ​ ) ⋅ ... ⋅ cos ( 2 2016 x ​ ) untuk 0 ≤ x ≤ π .

Tentukan nilai  yang memenuhi persamaan:

untuk .

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

14

:

35

:

43

Klaim

Iklan

S. Difhayanti

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Prof. Dr. Hamka

Jawaban terverifikasi

Jawaban

nilai yang memenuhi adalah .

nilai x yang memenuhi adalah x equals straight pi over 4 atau space x equals fraction numerator 3 straight pi over denominator 4 end fraction.

Pembahasan

Ingat bahwa: Sehingga, didapat perhitungan berikut. Maka, . Jadi, nilai yang memenuhi adalah .

Ingat bahwa:

table attributes columnalign right center left columnspacing 0px end attributes row blank blank sin end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank alpha end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cos end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank alpha end table table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 1 half end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank sin end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank space end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 2 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank alpha end table

Sehingga, didapat perhitungan berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell sin space alpha space cos space alpha end cell equals cell 1 half sin space 2 alpha end cell row cell fraction numerator 1 over denominator sin open parentheses begin display style x over 2 to the power of 2016 end style close parentheses end fraction end cell equals cell 2 to the power of 2016 square root of 2 cos space open parentheses x over 2 close parentheses times cos open parentheses x over 4 close parentheses times... times cos space open parentheses x over 2 to the power of 2016 close parentheses end cell row 1 equals cell 2 to the power of 2016 square root of 2 cos space open parentheses x over 2 close parentheses times cos open parentheses x over 4 close parentheses times... times cos space open parentheses x over 2 to the power of 2016 close parentheses space sin space open parentheses x over 2 to the power of 2016 close parentheses end cell row 1 equals cell 2 to the power of 2015 square root of 2 cos space open parentheses x over 2 close parentheses times cos open parentheses x over 4 close parentheses times... times sin space open parentheses x over 2 to the power of 2015 close parentheses end cell row 1 equals cell 2 to the power of 2014 square root of 2 cos space open parentheses x over 2 close parentheses times cos open parentheses x over 4 close parentheses times... times sin space open parentheses x over 2 to the power of 2014 close parentheses end cell row 1 equals cell square root of 2 sin space x end cell row cell sin space x end cell equals cell straight pi over 4 end cell end table

Maka, x equals straight pi over 4 atau space x equals fraction numerator 3 straight pi over denominator 4 end fraction.

Jadi, nilai x yang memenuhi adalah x equals straight pi over 4 atau space x equals fraction numerator 3 straight pi over denominator 4 end fraction.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Himpunan penyelesaian dari cos x − 2 sin x ⋅ cos x = 0 dengan 0 ∘ ≤ x ≤ 36 0 ∘ adalah ....

13

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia