Iklan

Iklan

Pertanyaan

Tentukan nilai-nilai x dalam interval 0 ∘ < x < 36 0 ∘ yang memenuhi persamaan di bawah ini : 3 sin x ∘ + 2 cos x ∘ = 13 ​

Tentukan nilai-nilai  dalam interval  yang memenuhi persamaan di bawah ini :

Iklan

A. Hadiannur

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Jawaban

nilai x yang memenuhi persamaan adalah 33 , 6 9 ∘ .

nilai  yang memenuhi persamaan adalah .

Iklan

Pembahasan

Ingat : R cos ( x − α ) R ​ = = ​ a cos x + b sin x , dengan a 2 + b 2 ​ dan α = tan − 1 ( a b ​ ) ​ Penyelesaian persamaan a cos x ∘ + b sin x ∘ ​ = ​ c , ∣ c ∣ ≤ R ​ : x ​ = ​ α ± cos ( R c ​ ) + k ⋅ 36 0 ∘ , k ∈ 36 0 ∘ ​ Diketahui dari soal : 3 sin x ∘ + 2 cos x ∘ = 13 ​ Berdasarkan konsep di atas maka diperoleh : R cos ( x − α ) 3 sin x ∘ + 2 cos x ∘ R R α ​ = = = = = ​ a cos x + b sin x , R cos ( x − α ) ∘ = 13 ​ a 2 + b 2 ​ a 2 + b 2 ​ = 3 2 + 2 2 ​ = 9 + 4 ​ = 13 ​ tan − 1 ( a b ​ ) = tan − 1 ( 3 2 ​ ) = 33 , 6 9 ∘ ​ Karena ( 2 , 3 ) berada di kuadran pertama maka α juga di kuadran pertama. Sehingga diperoleh persamaan 13 ​ cos ( x − 33 , 69 ) ∘ = 13 ​ . Maka diperoleh : 13 ​ cos ( x − 33 , 69 ) ∘ cos ( x − 33 , 69 ) ∘ ( x − 33 , 69 ) ∘ x cos − 1 1 x 1 ​ x 2 ​ untuk k x 1 ​ x 2 ​ ​ = = = = = = = = = = ​ 13 ​ 13 ​ 13 ​ ​ = 1 cos − 1 1 α ± cos ( R c ​ ) + k ⋅ 36 0 ∘ 0 ∘ α + cos ( R c ​ ) + k ⋅ 36 0 ∘ α − cos ( R c ​ ) + k ⋅ 36 0 ∘ 0 : 33 , 6 9 ∘ + 0 ∘ = 33 , 6 9 ∘ 33 , 6 9 ∘ − 0 ∘ = 33 , 6 9 ∘ ​ Dengan demikian, nilai x yang memenuhi persamaan adalah 33 , 6 9 ∘ .

Ingat :

  • Penyelesaian persamaan  :

 

Diketahui dari soal :

Berdasarkan konsep di atas maka diperoleh :

Karena  berada di kuadran pertama maka  juga di kuadran pertama. Sehingga diperoleh persamaan . Maka diperoleh :

Dengan demikian, nilai  yang memenuhi persamaan adalah .

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

abiel aisy

Pembahasan lengkap banget

Iklan

Iklan

Pertanyaan serupa

Tentukanlah himpunan penyelesaian daripersamaan berikut ini, untuk − 2 π ≤ x ≤ 2 π . 2 sin x cos x + 3 ​ cos 2 x = 1

21

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia