Iklan

Pertanyaan

Tentukan invers matriks di bawah ini dengan ekspansi kofaktor-minor! N = ⎝ ⎛ ​ 2 1 0 ​ 3 2 − 1 ​ 0 3 − 5 ​ ⎠ ⎞ ​

Tentukan invers matriks di bawah ini dengan ekspansi kofaktor-minor!

  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

00

:

52

:

19

Klaim

Iklan

I. Sutiawan

Master Teacher

Mahasiswa/Alumni Universitas Pasundan

Jawaban terverifikasi

Jawaban

invers matriks dari hasil ekspansi kofaktor-minor di atas adalah

invers matriks N dari hasil ekspansi kofaktor-minor di atas adalah N to the power of negative 1 end exponent equals table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses table row cell negative 7 end cell 15 7 row 5 cell negative 10 end cell cell negative 6 end cell row cell negative 1 end cell 2 1 end table close parentheses end cell end table 

Pembahasan

Diketahui , maka: Jadi, invers matriks dari hasil ekspansi kofaktor-minor di atas adalah

Diketahui N equals open parentheses table row 2 3 0 row 1 2 3 row 0 cell negative 1 end cell cell negative 5 end cell end table close parentheses, maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell open vertical bar N close vertical bar end cell equals cell 2 open vertical bar table row 2 3 row cell negative 1 end cell cell negative 5 end cell end table close vertical bar minus 3 open vertical bar table row 1 3 row 0 cell negative 5 end cell end table close vertical bar plus 0 open vertical bar table row 1 2 row 0 cell negative 1 end cell end table close vertical bar end cell row blank equals cell 2 left parenthesis negative 10 minus left parenthesis negative 3 right parenthesis right parenthesis minus 3 left parenthesis negative 5 minus 0 right parenthesis plus 0 left parenthesis negative 1 minus 0 right parenthesis end cell row blank equals cell negative 14 plus 15 plus 0 end cell row blank equals 1 end table

table attributes columnalign right center left columnspacing 0px end attributes row cell Adj space N end cell equals cell open parentheses table row cell plus open vertical bar table row 2 3 row cell negative 1 end cell cell negative 5 end cell end table close vertical bar end cell cell negative open vertical bar table row 3 0 row cell negative 1 end cell cell negative 5 end cell end table close vertical bar end cell cell plus open vertical bar table row 3 0 row 2 3 end table close vertical bar end cell row cell negative open vertical bar table row 1 3 row 0 cell negative 5 end cell end table close vertical bar end cell cell plus open vertical bar table row 2 0 row 0 cell negative 5 end cell end table close vertical bar end cell cell negative open vertical bar table row 2 0 row 1 3 end table close vertical bar end cell row cell plus open vertical bar table row 1 2 row 0 cell negative 1 end cell end table close vertical bar end cell cell negative open vertical bar table row 2 3 row 0 cell negative 1 end cell end table close vertical bar end cell cell plus open vertical bar table row 2 3 row 1 2 end table close vertical bar end cell end table close parentheses end cell row blank equals cell open parentheses table row cell negative 7 end cell 15 7 row 5 cell negative 10 end cell cell negative 6 end cell row cell negative 1 end cell 2 1 end table close parentheses end cell end table

table attributes columnalign right center left columnspacing 0px end attributes row cell N to the power of negative 1 end exponent end cell equals cell fraction numerator 1 over denominator open vertical bar N close vertical bar end fraction cross times Adj space N end cell row blank equals cell 1 over 1 open parentheses table row cell negative 7 end cell 15 7 row 5 cell negative 10 end cell cell negative 6 end cell row cell negative 1 end cell 2 1 end table close parentheses end cell row blank equals cell open parentheses table row cell negative 7 end cell 15 7 row 5 cell negative 10 end cell cell negative 6 end cell row cell negative 1 end cell 2 1 end table close parentheses end cell end table

Jadi, invers matriks N dari hasil ekspansi kofaktor-minor di atas adalah N to the power of negative 1 end exponent equals table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses table row cell negative 7 end cell 15 7 row 5 cell negative 10 end cell cell negative 6 end cell row cell negative 1 end cell 2 1 end table close parentheses end cell end table 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Invers dari matriks adalah ....

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2026 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia