Iklan

Pertanyaan

Pergunakan prinsip kofaktor-minor untuk menentukan invers matriks berikut. ⎝ ⎛ ​ 1 2 3 ​ − 2 1 − 2 ​ − 1 5 3 ​ ⎠ ⎞ ​

Pergunakan prinsip kofaktor-minor untuk menentukan invers matriks berikut.

  

 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

17

:

57

:

21

Klaim

Iklan

A. Septianingsih

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Pembahasan

Menentukan determinan Menentukan kofaktor Menentukan adjoin Menentukan invers matriks Kesimpulan

Menentukan determinan

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell determinan space colon end cell row blank blank cell open vertical bar table row 1 cell negative 2 end cell cell negative 1 end cell row 2 1 5 row 3 cell negative 2 end cell 3 end table close vertical bar table row 1 cell negative 2 end cell row 2 1 row 3 cell negative 2 end cell end table end cell row blank equals cell open square brackets open parentheses 1.1.3 close parentheses plus open parentheses negative 2.5.3 close parentheses plus open parentheses negative 1.2. negative 2 close parentheses close square brackets minus open square brackets open parentheses 3. negative 1.1 close parentheses plus open parentheses negative 2.5.1 close parentheses plus open parentheses 3.2. negative 2 close parentheses close square brackets end cell row blank equals cell open square brackets 3 plus open parentheses negative 30 close parentheses plus 4 close square brackets minus open square brackets negative 3 plus open parentheses negative 10 close parentheses plus negative 12 close square brackets end cell row blank equals cell negative 23 plus 25 end cell row blank equals 2 row blank equals 6 row blank blank blank end table     

Menentukan kofaktor

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell Kofaktor space colon end cell row cell open vertical bar table row cell plus open vertical bar table row 1 5 row cell negative 2 end cell 3 end table close vertical bar end cell cell negative open vertical bar table row 2 5 row 3 3 end table close vertical bar end cell cell plus open vertical bar table row 2 1 row 3 cell negative 2 end cell end table close vertical bar end cell row cell negative open vertical bar table row cell negative 2 end cell cell negative 1 end cell row cell negative 2 end cell 3 end table close vertical bar end cell cell plus open vertical bar table row 1 cell negative 1 end cell row 3 3 end table close vertical bar end cell cell negative open vertical bar table row 2 1 row 3 cell negative 2 end cell end table close vertical bar end cell row cell plus open vertical bar table row cell negative 2 end cell cell negative 1 end cell row 1 5 end table close vertical bar end cell cell negative open vertical bar table row 1 cell negative 1 end cell row 2 5 end table close vertical bar end cell cell plus open vertical bar table row 1 cell negative 2 end cell row 2 1 end table close vertical bar end cell end table close vertical bar end cell equals cell open vertical bar table row 13 9 cell negative 7 end cell row 8 6 7 row cell negative 9 end cell cell negative 7 end cell 5 end table close vertical bar end cell row blank blank blank row blank blank blank end table    

Menentukan adjoin

table attributes columnalign right center left columnspacing 0px end attributes row cell Adjoin space end cell equals cell transpose space dari space kofaktor end cell row blank equals cell open vertical bar table row 13 8 cell negative 9 end cell row 9 6 cell negative 7 end cell row cell negative 7 end cell 7 5 end table close vertical bar end cell end table   

  

Menentukan invers matriks

table attributes columnalign right center left columnspacing 0px end attributes row blank equals cell 1 over determinan cross times adjoin end cell row blank equals cell 1 over 6 open vertical bar table row 13 8 cell negative 9 end cell row 9 6 cell negative 7 end cell row cell negative 7 end cell 7 5 end table close vertical bar end cell row blank blank blank end table      

Kesimpulan 

Jadi space inversnya space adalah space table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell 1 over 6 end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open vertical bar table row 13 8 cell negative 9 end cell row 9 6 cell negative 7 end cell row cell negative 7 end cell 7 5 end table close vertical bar end cell end table 

 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Invers dari matriks adalah ....

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia