Iklan

Pertanyaan

Segitiga PQR siku-siku di R. 2 cos α − sin β = ....

Segitiga PQR siku-siku di R. 

....

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

13

:

59

:

40

Iklan

I. Kumaralalita

Master Teacher

Mahasiswa/Alumni Universitas Gadjah Mada

Jawaban terverifikasi

Jawaban

.

 2 space cos space straight alpha minus sin space straight beta equals 4 over 5.

Pembahasan

Diketahui : Segitiga PQR siku-siku di R. Panjang PR = 4. Panjang RQ = 3. Ditanya : ? Mencari panjang sisi miring PQ terlebih dahulu dengan menggunakan teorema pythagoras. Kemudian mencari nilai dan dengan perbandingan sisi trigonometri. Sisi di depan sudut adalah sisi QR, sehingga untuk nilai sudut , sisi samping dan sisi miring , sehingga Sisi di depan sudut adalah sisi PR, sehingga untuk nilai sudut Maka, Jadi, .

Diketahui :
Segitiga PQR siku-siku di R.
Panjang PR = 4.
Panjang RQ = 3.

Ditanya : 2 space cos space straight alpha minus sin space straight beta ?

Mencari panjang sisi miring PQ terlebih dahulu dengan menggunakan teorema pythagoras.

table attributes columnalign right center left columnspacing 0px end attributes row PQ equals cell square root of PR squared plus RQ squared end root end cell row blank equals cell square root of 4 squared plus 3 squared end root end cell row blank equals cell square root of 16 plus 9 end root end cell row blank equals cell square root of 25 end cell row blank equals 5 end table

Kemudian mencari nilai cos space alpha dan sin space beta dengan perbandingan sisi trigonometri.

Sisi di depan sudut alpha adalah sisi QR, sehingga untuk nilai sudut alpha, sisi sampingequals PR dan sisi miringequals PQ, sehingga

table attributes columnalign right center left columnspacing 0px end attributes row cell cos space alpha end cell equals cell Samping over Miring end cell row blank equals cell PR over PQ end cell row blank equals cell 4 over 5 end cell end table

Sisi di depan sudut beta adalah sisi PR, sehingga untuk nilai sudut beta

table attributes columnalign right center left columnspacing 0px end attributes row cell sin space straight beta end cell equals cell Depan over Miring end cell row blank equals cell PR over PQ end cell row blank equals cell 4 over 5 end cell end table

Maka,

 table attributes columnalign right center left columnspacing 0px end attributes row cell 2 space cos space straight alpha minus sin space straight beta end cell equals cell open parentheses 2 cross times 4 over 5 close parentheses minus 4 over 5 end cell row blank equals cell 8 over 5 minus 4 over 5 end cell row blank equals cell 4 over 5 end cell end table

Jadi, 2 space cos space straight alpha minus sin space straight beta equals 4 over 5.

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

15

Zahra

Jawaban tidak sesuai

Salsabila Wahyu Lestari

Jawaban tidak sesuai Pembahasan terpotong Pembahasan tidak menjawab soal

Anon

Makasih ❤️

defannie aura istri

Ini yang aku cari!

Darien Rahma Syauqiah

Mudah dimengerti

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!