Nilai x yang memenuhi persamaan adalah ….

Pertanyaan

Nilai begin mathsize 14px style x end style yang memenuhi persamaan begin mathsize 14px style log presubscript presuperscript 3 invisible function application open parentheses 2 x squared minus 6 x minus 36 close parentheses minus log presubscript presuperscript 3 invisible function application 2 open parentheses x minus 3 close parentheses equals log presubscript presuperscript 4 invisible function application open parentheses x minus 6 close parentheses end style adalah ….

  1. 5space space 

  2. 6space space 

  3. 7space space 

  4. 8space space 

  5. 9space space 

R. Diah

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah C.

Pembahasan

Perhatikan syarat numerusnya.

Numerus pertama.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 2 x squared minus 6 x minus 36 end cell greater than 0 row cell 2 open parentheses x plus 3 close parentheses open parentheses x minus 6 close parentheses end cell greater than 0 end table end style

Numerus kedua.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell 2 open parentheses x minus 3 close parentheses end cell greater than 0 row x greater than 3 end table end style 

  

Numerus ketiga.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell x minus 6 end cell greater than 0 row x greater than 6 end table end style 

Diperoleh irisan ketiga syarat numerus berikut ini.

 

Maka daerah penyelesaian untuk syarat numerusnya adalah begin mathsize 14px style open curly brackets x vertical line x greater than 6 comma space x element of straight real numbers close curly brackets end style.

Kemudian penyelesaian untuk persamaan logaritma di atas adalah

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell log presubscript presuperscript 3 invisible function application open parentheses 2 x squared minus 6 x minus 36 close parentheses minus log presubscript presuperscript 3 invisible function application 2 open parentheses x minus 3 close parentheses end cell equals cell log presubscript presuperscript 4 invisible function application open parentheses x minus 6 close parentheses end cell row cell log presubscript presuperscript 3 invisible function application open parentheses fraction numerator 2 x squared minus 6 x minus 36 over denominator 2 open parentheses x minus 3 close parentheses end fraction close parentheses end cell equals cell log presubscript presuperscript 4 invisible function application open parentheses x minus 6 close parentheses end cell row cell log presubscript presuperscript 3 invisible function application open parentheses fraction numerator 2 open parentheses x plus 3 close parentheses open parentheses x minus 6 close parentheses over denominator 2 open parentheses x minus 3 close parentheses end fraction close parentheses end cell equals cell log presubscript presuperscript 4 invisible function application open parentheses x minus 6 close parentheses end cell row cell log presubscript presuperscript 3 invisible function application open parentheses x minus 6 close parentheses end cell equals cell log presubscript presuperscript 4 invisible function application open parentheses x minus 6 close parentheses end cell row blank blank blank end table end style

Karena kedua basisnya berbeda maka numerusnya harus sama dengan satu.

Maka,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell x minus 6 end cell equals 1 row x equals cell 1 plus 6 end cell row x equals 7 end table end style

Karena begin mathsize 14px style x equals 7 end style memenuhi syarat numerus di atas maka begin mathsize 14px style x equals 7 end style juga memenuhi persamaan logaritma tersebut.

Jadi, jawaban yang tepat adalah C.

76

0.0 (0 rating)

Pertanyaan serupa

Jika nilai x memenuhi persamaan  2​log(x2−2x−23)= 3​log(x2−2x−23) dan  6x​logk=21​, nilai k yang tepat adalah …

30

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia