Iklan

Pertanyaan

Nilai .... (SIMAK UI 2009)

Nilai begin mathsize 14px style limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus square root of straight x squared plus 1 end root minus square root of straight x squared plus straight x end root close parentheses equals end style....

(SIMAK UI 2009)

  1. begin mathsize 14px style 5 over 2 end style 

  2. begin mathsize 14px style 2 end style 

  3. begin mathsize 14px style 3 over 2 end style 

  4. begin mathsize 14px style 1 end style 

  5. begin mathsize 14px style 1 half end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

19

:

32

:

44

Klaim

Iklan

I. Roy

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Pembahasan

Perhatikan perhitungan berikut ini! Kemudian, akan dicari nilai limitnya satu persatu.dengan mengingat Pertama, perhatikan bentuk Didapat . Dengan demikian, diperoleh Selanjutnya, perhatikan bentuk Didapat .Dengan demikian, diperoleh Lalu, perhatikan bentuk Didapat .Dengan demikian, diperoleh Akibatnya, diperoleh hasil sebagai berikut. Jadi, jawabannya adalah C.

Perhatikan perhitungan berikut ini!

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus square root of straight x squared plus 1 end root minus square root of straight x squared plus straight x end root close parentheses end cell row blank equals cell limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus 2 x plus x minus square root of straight x squared plus 1 end root plus x minus square root of straight x squared plus straight x end root close parentheses end cell row blank equals cell limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus square root of 4 x squared end root plus square root of x squared end root minus square root of straight x squared plus 1 end root plus square root of x squared end root minus square root of straight x squared plus straight x end root close parentheses end cell row blank equals cell limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus square root of 4 x squared end root close parentheses plus limit as straight x rightwards arrow straight infinity of open parentheses square root of x squared end root minus square root of straight x squared plus 1 end root close parentheses plus limit as straight x rightwards arrow straight infinity of open parentheses square root of x squared end root minus square root of straight x squared plus straight x end root close parentheses end cell end table end style

Kemudian, akan dicari nilai limitnya satu persatu.dengan mengingat

begin mathsize 14px style limit as x rightwards arrow infinity of open parentheses square root of a x squared plus b x plus c end root minus square root of p x squared plus q x plus r end root close parentheses equals open curly brackets table attributes columnalign right left end attributes row cell infinity comma end cell cell a greater than p end cell row cell fraction numerator b minus q over denominator 2 square root of a end fraction comma end cell cell a equals p end cell row cell negative infinity comma end cell cell a less than p end cell end table close end style

Pertama, perhatikan bentuk

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell limit as x rightwards arrow infinity of end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses square root of 4 x squared plus 8 x end root minus square root of 4 x squared end root close parentheses end cell end table end style

Didapat begin mathsize 14px style a equals p equals 4 comma space b equals 8 comma space q equals 0 end style. Dengan demikian, diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow infinity of open parentheses square root of 4 x squared plus 8 x end root minus square root of 4 x squared end root close parentheses end cell equals cell fraction numerator b minus q over denominator 2 square root of a end fraction end cell row blank equals cell fraction numerator 8 minus 0 over denominator 2 square root of 4 end fraction end cell row blank equals cell fraction numerator 8 over denominator 2 times 2 end fraction end cell row blank equals cell 8 over 4 end cell row blank equals 2 end table end style

Selanjutnya, perhatikan bentuk

begin mathsize 14px style limit as x rightwards arrow infinity of open parentheses square root of x squared end root minus square root of x squared plus 1 end root close parentheses end style

Didapat begin mathsize 14px style a equals p equals 1 comma space b equals 0 comma space q equals 0 end style. Dengan demikian, diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow infinity of open parentheses square root of x squared end root minus square root of x squared plus 1 end root close parentheses end cell equals cell fraction numerator b minus q over denominator 2 square root of a end fraction end cell row blank equals cell fraction numerator 0 minus 0 over denominator 2 square root of 1 end fraction end cell row blank equals 0 end table end style

Lalu, perhatikan bentuk

begin mathsize 14px style limit as x rightwards arrow infinity of open parentheses square root of x squared end root minus square root of x squared plus x end root close parentheses end style

Didapat undefined. Dengan demikian, diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow infinity of open parentheses square root of x squared end root minus square root of x squared plus x end root close parentheses end cell equals cell fraction numerator b minus q over denominator 2 square root of a end fraction end cell row blank equals cell fraction numerator 0 minus 1 over denominator 2 square root of 1 end fraction end cell row blank equals cell negative 1 half end cell end table end style

Akibatnya, diperoleh hasil sebagai berikut.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell limit as straight x rightwards arrow straight infinity of invisible function application open parentheses square root of 4 straight x squared plus 8 straight x end root minus square root of 4 x squared end root close parentheses plus limit as straight x rightwards arrow straight infinity of open parentheses square root of x squared end root minus square root of straight x squared plus 1 end root close parentheses plus limit as straight x rightwards arrow straight infinity of open parentheses square root of x squared end root minus square root of straight x squared plus straight x end root close parentheses end cell row blank equals cell 2 plus 0 plus open parentheses negative 1 half close parentheses end cell row blank equals cell 2 minus 1 half end cell row blank equals cell fraction numerator 4 minus 1 over denominator 2 end fraction end cell row blank equals cell 3 over 2 end cell end table end style

Jadi, jawabannya adalah C.

 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Jika dan , maka .... (SBMPTN 2014)

4

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia