Iklan

Iklan

Pertanyaan

Matriks K,L,M, dan N memenuhi hubungan N = 2 K + LM T . Jika matriks K = [ 0 11 ​ − 9 7 ​ ] , L = [ 3 2 ​ 1 5 ​ − 1 0 ​ 1 6 ​ ] , M = [ 0 1 ​ 2 3 ​ 0 − 2 ​ 7 4 ​ ] , matriks N = ...

Matriks K,L,M, dan N memenuhi hubungan . Jika matriks , matriks    

  1. begin mathsize 14px style open square brackets table row cell negative 5 end cell cell negative 6 end cell row cell negative 10 end cell 55 end table close square brackets end style 

  2. begin mathsize 14px style open square brackets table row cell negative 5 end cell cell negative 6 end cell row cell negative 10 end cell cell negative 27 end cell end table close square brackets end style 

  3. begin mathsize 14px style open square brackets table row cell negative 5 end cell 30 row cell negative 10 end cell 55 end table close square brackets end style 

  4. begin mathsize 14px style open square brackets table row 5 30 row cell negative 10 end cell cell negative 27 end cell end table close square brackets end style 

  5. begin mathsize 14px style open square brackets table row 5 30 row cell negative 10 end cell 55 end table close square brackets end style 

Iklan

H. Nufus

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah A

jawaban yang tepat adalah A

Iklan

Pembahasan

Diketahui matriks , Maka Matriks dan , maka Jadi Matriks adalah Jadi, jawaban yang tepat adalah A

Diketahui matriks begin mathsize 14px style K equals open square brackets table row 0 cell negative 9 end cell row 11 7 end table close square brackets end style, Maka 

begin mathsize 14px style 2 K equals 2 open square brackets table row 0 cell negative 9 end cell row 11 7 end table close square brackets equals open square brackets table row cell 2 open parentheses 0 close parentheses end cell cell 2 open parentheses negative 9 close parentheses end cell row cell 2 open parentheses 11 close parentheses end cell cell 2 open parentheses 7 close parentheses end cell end table close square brackets equals open square brackets table row 0 cell negative 18 end cell row 22 14 end table close square brackets end style 

Matriks begin mathsize 14px style L equals open square brackets table row 3 1 cell negative 1 end cell 1 row 2 5 0 6 end table close square brackets end style dan begin mathsize 14px style M equals open square brackets table row 0 2 0 cell negative 7 end cell row 1 3 cell negative 2 end cell 4 end table close square brackets end style, maka 

begin mathsize 14px style L M to the power of T equals open square brackets table row 3 1 cell negative 1 end cell 1 row 2 5 0 6 end table close square brackets open square brackets table row 0 2 0 cell negative 7 end cell row 1 3 cell negative 2 end cell 4 end table close square brackets to the power of Tequals open square brackets table row 3 1 cell negative 1 end cell 1 row 2 5 0 6 end table close square brackets open square brackets table row 0 1 row 2 3 row 0 cell negative 2 end cell row cell negative 7 end cell 4 end table close square bracketsequals open square brackets table row cell 3 open parentheses 0 close parentheses plus 1 open parentheses 2 close parentheses plus open parentheses negative 1 close parentheses open parentheses 0 close parentheses plus 1 open parentheses negative 7 close parentheses end cell cell 3 open parentheses 1 close parentheses plus 1 open parentheses 3 close parentheses plus open parentheses negative 1 close parentheses open parentheses negative 2 close parentheses plus 1 open parentheses 4 close parentheses end cell row cell 2 open parentheses 0 close parentheses plus 5 open parentheses 2 close parentheses plus 0 open parentheses 0 close parentheses plus 6 open parentheses negative 7 close parentheses end cell cell 2 open parentheses 1 close parentheses plus 5 open parentheses 3 close parentheses plus 0 open parentheses negative 2 close parentheses plus 6 open parentheses 4 close parentheses end cell end table close square bracketsequals open square brackets table row cell 0 plus 2 plus 0 minus 7 end cell cell 3 plus 3 plus 2 plus 4 end cell row cell 0 plus 10 plus 0 minus 42 end cell cell 2 plus 15 plus 0 plus 24 end cell end table close square bracketsequals open square brackets table row cell negative 5 end cell 12 row cell negative 32 end cell 41 end table close square brackets end style 

Jadi Matriks begin mathsize 14px style N end style adalah 

begin mathsize 14px style N equals 2 K plus L M to the power of T N equals open square brackets table row 0 cell negative 18 end cell row 22 14 end table close square brackets plus open square brackets table row cell negative 5 end cell 12 row cell negative 32 end cell 41 end table close square brackets N equals open square brackets table row cell 0 plus open parentheses negative 5 close parentheses end cell cell negative 18 plus 12 end cell row cell 22 plus open parentheses negative 32 close parentheses end cell cell 14 plus 41 end cell end table close square brackets N equals open square brackets table row cell negative 5 end cell cell negative 6 end cell row cell negative 10 end cell 55 end table close square brackets end style 

Jadi, jawaban yang tepat adalah A

Latihan Bab

Konsep Kilat

Pengertian Matriks

Operasi Hitung Matriks

Invers Matriks

457

Iklan

Iklan

Pertanyaan serupa

Diketahui matriks A = ( 1 3 ​ 2 5 ​ ) dan B = ( 3 1 ​ − 2 4 ​ ) . Jika A t adalah transpose dari matriks A dan AX = B + maka determinan matriks X adalah ....

3rb+

4.4

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia