Iklan

Pertanyaan

Let g ( x ) = x 2 + 2 ( a + b ) x + 2 ( a 2 + b 2 ) ,where and b are constants. a. Show that the coordinates of the vertex is ( − ( a + b ) , ( a − b ) 2 ) (-(a + b), (a - b)2)

Let ,where a and  are constants.

a. Show that the coordinates of the vertex is (-(a + b), (a - b)2)

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

06

:

17

:

17

Klaim

Iklan

I. Sutiawan

Master Teacher

Mahasiswa/Alumni Universitas Pasundan

Jawaban terverifikasi

Jawaban

titik puncak dari fungsi kuadrat adalah .

titik puncak dari  fungsi kuadrat g open parentheses x close parentheses equals x squared plus 2 open parentheses a plus b close parentheses x plus 2 open parentheses a squared plus b squared close parentheses adalah left parenthesis negative left parenthesis a plus b right parenthesis comma space left parenthesis a minus b right parenthesis squared right parenthesis.

Pembahasan

Diketahui , maka untuk menentukan vertex atau titik puncaknya kita dapat menggunakan rumus , sehingga: Jadi, titik puncak dari fungsi kuadrat adalah .

Diketahui g open parentheses x close parentheses equals x squared plus 2 open parentheses a plus b close parentheses x plus 2 open parentheses a squared plus b squared close parentheses, maka untuk menentukan vertex atau titik puncaknya kita dapat menggunakan rumus left parenthesis x subscript p comma space y subscript p right parenthesis equals open parentheses negative fraction numerator b over denominator 2 a end fraction comma space minus fraction numerator D over denominator 4 a end fraction close parentheses, sehingga:

table attributes columnalign right center left columnspacing 0px end attributes row cell x subscript p end cell equals cell negative fraction numerator b over denominator 2 a end fraction end cell row blank equals cell negative fraction numerator 2 left parenthesis a plus b right parenthesis over denominator 2 left parenthesis 1 right parenthesis end fraction end cell row blank equals cell negative fraction numerator 2 left parenthesis a plus b right parenthesis over denominator 2 end fraction end cell row blank equals cell negative left parenthesis a plus b right parenthesis end cell row blank blank blank row cell y subscript p end cell equals cell negative fraction numerator D over denominator 4 a end fraction end cell row blank equals cell negative fraction numerator b squared minus 4 a c over denominator 4 a end fraction end cell row blank equals cell negative fraction numerator left parenthesis 2 left parenthesis a plus b right parenthesis right parenthesis squared minus 4 left parenthesis 1 right parenthesis left parenthesis 2 left parenthesis a squared plus b squared right parenthesis right parenthesis over denominator 4 left parenthesis 1 right parenthesis end fraction end cell row blank equals cell negative fraction numerator 4 left parenthesis a squared plus 2 a b plus b squared right parenthesis minus 8 a squared minus 8 b squared over denominator 4 end fraction end cell row blank equals cell negative fraction numerator 4 a squared plus 8 a b plus 4 b squared minus 8 a squared minus 8 b squared over denominator 4 end fraction end cell row blank equals cell negative fraction numerator negative 4 a squared plus 8 a b minus 4 b squared over denominator 4 end fraction end cell row blank equals cell negative fraction numerator up diagonal strike 4 left parenthesis negative a squared plus 2 a b minus b squared right parenthesis over denominator up diagonal strike 4 end fraction end cell row blank equals cell a squared minus 2 a b plus b squared end cell row blank equals cell left parenthesis a minus b right parenthesis squared end cell end table

Jadi, titik puncak dari  fungsi kuadrat g open parentheses x close parentheses equals x squared plus 2 open parentheses a plus b close parentheses x plus 2 open parentheses a squared plus b squared close parentheses adalah left parenthesis negative left parenthesis a plus b right parenthesis comma space left parenthesis a minus b right parenthesis squared right parenthesis.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Tentukan domain dari setiap fungsi berikut. f ( t ) = 2 t − 6 t − 2 ​ ​

5

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia