Iklan

Pertanyaan

Jika 3 2 x − 1 = 6 x ⋅ 3 1 − x maka x = ...

Jika  maka ...

  1. log presuperscript 2 space 3 

  2. log presuperscript 3 space 2 

  3. log presuperscript 9 space 4 comma 5 

  4. log presuperscript 4 comma 5 end presuperscript space 9 

  5. log presuperscript 2 space 9 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

06

:

14

:

54

Klaim

Iklan

D. Rajib

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Malang

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah D.

jawaban yang benar adalah D.

Pembahasan

Diketahui : Ingat kembali bahwa : Sehingga Ubah bentuk eksponentersebut ke bentuk logaritma Ingat kembali bahwa : Sehingga Oleh karena itu, jawaban yang benar adalah D.

Diketahui : 3 to the power of 2 x minus 1 end exponent equals 6 to the power of x times 3 to the power of 1 minus x end exponent

Ingat kembali bahwa :

bullet space left parenthesis ab right parenthesis to the power of straight m equals straight a to the power of straight m straight b to the power of straight m bullet space straight a to the power of straight m straight a to the power of straight n equals straight a to the power of straight m plus straight n end exponent bullet space straight a to the power of straight m over straight a to the power of straight n equals straight a to the power of straight m minus straight n end exponent  

Sehingga

table attributes columnalign right center left columnspacing 0px end attributes row cell 3 to the power of 2 x minus 1 end exponent end cell equals cell 6 to the power of x times 3 to the power of 1 minus x end exponent end cell row cell 3 to the power of 2 x minus 1 end exponent end cell equals cell left parenthesis 2 times 3 right parenthesis to the power of x times 3 to the power of 1 minus x end exponent space end cell row cell 3 to the power of 2 x minus 1 end exponent end cell equals cell 2 to the power of x times 3 to the power of x times 3 to the power of 1 minus x end exponent end cell row cell 3 to the power of 2 x minus 1 end exponent end cell equals cell 2 to the power of x times 3 end cell row cell 3 to the power of 2 x minus 1 end exponent over 3 end cell equals cell 2 to the power of x end cell row cell 3 to the power of 2 x minus 2 end exponent end cell equals cell 2 to the power of x end cell end table  

Ubah bentuk eksponen tersebut ke bentuk logaritma

Ingat kembali bahwa : 

bullet space log presuperscript straight a space f left parenthesis x right parenthesis equals log presuperscript straight a space g left parenthesis x right parenthesis rightwards arrow f left parenthesis x right parenthesis equals g left parenthesis x right parenthesis bullet space log presuperscript straight a space straight b to the power of straight m equals straight m space log presuperscript straight a space straight b bullet space log presuperscript straight a space straight b minus log presuperscript straight a space straight c equals log presuperscript straight a space straight b over straight c bullet space fraction numerator log presuperscript straight p space straight b over denominator log presuperscript straight p space straight a end fraction equals log presuperscript straight a space straight b  

Sehingga 

table attributes columnalign right center left columnspacing 0px end attributes row cell 3 to the power of 2 x minus 2 end exponent end cell equals cell 2 to the power of x end cell row cell log space 3 to the power of 2 x minus 2 end exponent end cell equals cell log space 2 to the power of x end cell row cell left parenthesis 2 x minus 2 right parenthesis space log space 3 end cell equals cell x space log space 2 end cell row cell 2 x space log space 3 minus 2 space log space 3 end cell equals cell x space log space 2 end cell row cell 2 x space log space 3 minus x space log space 2 end cell equals cell 2 space log space 3 end cell row cell x left parenthesis 2 space log space 3 minus log space 2 right parenthesis end cell equals cell 2 space log space 3 end cell row cell x left parenthesis log space 3 squared minus log space 2 right parenthesis end cell equals cell log space 3 squared end cell row cell x left parenthesis log space 3 squared over 2 right parenthesis end cell equals cell log space 3 squared end cell row cell x left parenthesis log space 9 over 2 right parenthesis end cell equals cell log space 9 end cell row x equals cell fraction numerator log space 9 over denominator log space begin display style 9 over 2 end style end fraction end cell row x equals cell fraction numerator log space 9 over denominator log space 4 comma 5 end fraction end cell row x equals cell log presuperscript 4 comma 5 end presuperscript space 9 end cell end table 

Oleh karena itu, jawaban yang benar adalah D.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Tentukan penyelesaian dari sistem persamaan berikut: a. { 2 lo g x + 2 lo g y = 12 3 2 lo g x − 2 lo g y = 4 ​

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia