Iklan

Pertanyaan

Jika dengan , maka adalah ....

Jika f open parentheses x close parentheses equals fraction numerator x minus 2 over denominator 1 plus x end fraction dengan D subscript f equals open curly brackets x vertical line x not equal to negative 1 comma space x element of straight real numbers close curly brackets, maka f to the power of negative 1 end exponent open parentheses x close parentheses adalah ....

  1. f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x minus 2 over denominator 1 plus x end fraction comma space x not equal to negative 1 

  2. f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x plus 2 over denominator 1 minus x end fraction comma space x not equal to 1 

  3. f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x plus 1 over denominator 2 minus x end fraction comma space x not equal to 2 

  4. f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x minus 1 over denominator 2 plus x end fraction comma space x not equal to negative 2 

  5. f to the power of negative 1 end exponent left parenthesis x right parenthesis equals fraction numerator x plus 2 over denominator 1 plus x end fraction comma space x not equal to negative 1 

8 dari 10 siswa nilainya naik

dengan paket belajar pilihan

Habis dalam

02

:

01

:

49

:

48

Klaim

Iklan

N. Syafriah

Master Teacher

Jawaban terverifikasi

Jawaban

jawaban yang tepatadalah B.

jawaban yang tepat adalah B.

Pembahasan

Dapat diperiksa bahwa fungsi f bersifat bijektif sehingga f memiliki invers. Diketahui , maka invers dari f ( x ) dapat ditentukan sebagaiberikut. Karena f ( x ) = y , maka f − 1 ( y ) = x sehingga didapat hubungan sebagai berikut. Dengan demikian, invers dari f ( x ) adalah f − 1 ( x ) = 1 − x x + 2 ​ , x  = 1. Jadi, jawaban yang tepatadalah B.

Dapat diperiksa bahwa fungsi  bersifat bijektif sehingga  memiliki invers.

Diketahui f open parentheses x close parentheses equals fraction numerator x minus 2 over denominator 1 plus x end fraction, maka invers dari  dapat ditentukan sebagai berikut.

table attributes columnalign right center left columnspacing 0px end attributes row cell f open parentheses x close parentheses end cell equals cell fraction numerator x minus 2 over denominator 1 plus x end fraction end cell row y equals cell fraction numerator x minus 2 over denominator 1 plus x end fraction end cell row cell y open parentheses 1 plus x close parentheses end cell equals cell x minus 2 end cell row cell y plus x y end cell equals cell x minus 2 end cell row cell y plus x y minus x minus y end cell equals cell x minus 2 minus x minus y end cell row cell x y minus x end cell equals cell negative y minus 2 end cell row cell x open parentheses y minus 1 close parentheses end cell equals cell negative y minus 2 end cell row x equals cell fraction numerator negative y minus 2 over denominator y minus 1 end fraction end cell row x equals cell fraction numerator negative open parentheses y plus 2 close parentheses over denominator negative open parentheses negative y plus 1 close parentheses end fraction end cell row x equals cell fraction numerator y plus 2 over denominator negative y plus 1 end fraction end cell row x equals cell fraction numerator y plus 2 over denominator 1 minus y end fraction end cell end table 

Karena , maka  sehingga didapat hubungan sebagai berikut.

f to the power of negative 1 end exponent open parentheses y close parentheses equals x f to the power of negative 1 end exponent open parentheses y close parentheses equals fraction numerator y plus 2 over denominator 1 minus y end fraction f to the power of negative 1 end exponent open parentheses x close parentheses equals fraction numerator x plus 2 over denominator 1 minus x end fraction


Dengan demikian, invers dari  adalah 

Jadi, jawaban yang tepat adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Jika f ( x ) = 2 x − 1 dengan , maka rumus fungsi dari f − 1 ( x ) adalah....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia