Iklan

Pertanyaan

Jika x 1 ​ dan x 2 ​ adalah akar-akar persamaan kuadrat x 2 − 8 x + 9 = 0. Jumlah tak hingga deret

Jika dan adalah akar-akar persamaan kuadrat Jumlah tak hingga deret open parentheses 1 over straight x subscript 1 close parentheses plus open parentheses 1 over straight x subscript 2 close parentheses plus open parentheses 1 over straight x subscript 1 close parentheses squared plus open parentheses 1 over straight x subscript 2 close parentheses squared plus open parentheses 1 over straight x subscript 1 close parentheses cubed plus open parentheses 1 over straight x subscript 2 close parentheses cubed plus horizontal ellipsis equals horizontal ellipsis

  1. 5

  2. 4

  3. 3

  4. 2

  5. 1

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

18

:

02

:

44

Klaim

Iklan

N. Ayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Padang

Jawaban terverifikasi

Pembahasan

Karena dan adalah akar-akar persamaan kuadrat maka Jumlah tak hingga deretnya adalah... Jadi jumlah tak hingga di atas adalah

Karena straight x subscript 1 dan straight x subscript 2 adalah akar-akar persamaan kuadrat straight x squared minus 8 straight x plus 9 equals 0 maka

straight x subscript 1 plus straight x subscript 2 equals 8  straight x subscript 1 straight x subscript 2 equals 9

 

Jumlah tak hingga deretnya adalah...

open parentheses 1 over straight x subscript 1 close parentheses plus open parentheses 1 over straight x subscript 1 close parentheses squared plus open parentheses 1 over straight x subscript 1 close parentheses cubed plus horizontal ellipsis plus open parentheses 1 over straight x subscript 2 close parentheses plus open parentheses 1 over straight x subscript 2 close parentheses squared plus open parentheses 1 over straight x subscript 2 close parentheses cubed plus horizontal ellipsis equals...  stack stack open parentheses 1 over straight x subscript 1 close parentheses plus open parentheses 1 over straight x subscript 1 close parentheses squared plus open parentheses 1 over straight x subscript 1 close parentheses cubed plus horizontal ellipsis with underbrace below with straight A below plus stack stack open parentheses 1 over straight x subscript 2 close parentheses plus open parentheses 1 over straight x subscript 2 close parentheses squared plus open parentheses 1 over straight x subscript 2 close parentheses cubed plus horizontal ellipsis with underbrace below with straight B below equals...

  • straight A equals open parentheses 1 over straight x subscript 1 close parentheses plus open parentheses 1 over straight x subscript 1 close parentheses squared plus open parentheses 1 over straight x subscript 1 close parentheses cubed plus horizontal ellipsis

open square brackets Jumlah straight space tak straight space hingga straight space dengan straight space straight a equals 1 over straight x subscript 1 straight space dan straight space straight b equals fraction numerator open parentheses 1 over straight x subscript 1 close parentheses squared over denominator open parentheses 1 over straight x subscript 1 close parentheses end fraction close square brackets comma straight S subscript straight infinity equals fraction numerator straight a over denominator 1 minus straight r end fraction space

straight A equals fraction numerator 1 over straight x subscript 1 over denominator 1 minus 1 over straight x subscript 1 end fraction equals 1 over straight x subscript 1. fraction numerator straight x subscript 1 over denominator open parentheses straight x subscript 1 minus 1 close parentheses end fraction equals fraction numerator 1 over denominator straight x subscript 1 minus 1 end fraction

  • straight B equals open parentheses 1 over straight x subscript 2 close parentheses plus open parentheses 1 over straight x subscript 2 close parentheses squared plus open parentheses 1 over straight x subscript 2 close parentheses cubed plus horizontal ellipsis

open square brackets Jumlah straight space tak straight space hingga straight space dengan straight space straight a equals 1 over straight x subscript 2 straight space dan straight space straight b equals fraction numerator open parentheses 1 over straight x subscript 2 close parentheses squared over denominator open parentheses 1 over straight x subscript 2 close parentheses end fraction close square brackets comma space straight S subscript straight infinity equals fraction numerator straight a over denominator 1 minus straight r end fraction  straight B equals fraction numerator 1 over straight x subscript 2 over denominator 1 minus 1 over straight x subscript 2 end fraction equals 1 over straight x subscript 2. fraction numerator straight x subscript 2 over denominator open parentheses straight x subscript 2 minus 1 close parentheses end fraction equals fraction numerator 1 over denominator straight x subscript 2 minus 1 end fraction

 

Jadi jumlah tak hingga di atas adalah

straight A plus straight B equals fraction numerator 1 over denominator straight x subscript 1 minus 1 end fraction plus fraction numerator 1 over denominator straight x subscript 2 minus 1 end fraction equals fraction numerator straight x subscript 2 minus 1 plus straight x subscript 1 minus 1 over denominator open parentheses straight x subscript 1 minus 1 close parentheses open parentheses straight x subscript 2 minus 1 close parentheses end fraction equals fraction numerator straight x subscript 1 plus straight x subscript 2 over denominator straight x subscript 1 straight x subscript 2 minus open parentheses straight x subscript 1 plus straight x subscript 2 close parentheses plus 1 end fraction  equals fraction numerator 8 over denominator 9 minus 8 plus 1 end fraction  equals 8 over 2  equals space 4

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Diketahui 2 x 2 + x + q = 0 . Jika x 1 ​ , x 2 ​ , 2 1 ​ ( x 1 ​ ⋅ x 2 ​ ) merupakan suku pertama, kedua, dan ketiga suatu deret geometri, maka nilai q = ....

3

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia