Roboguru

Jika A, B dan C adalah sudut-sudut suatu segitiga, buktikan: c. sinA+sinB+sinC=4cos21​Acos21​Bcos21​C

Pertanyaan

Jika A, B dan C adalah sudut-sudut suatu segitiga, buktikan:

c. sin space A plus sin space B plus sin space C equals 4 space cos space 1 half A space cos space 1 half B space cos space 1 half C

Pembahasan Soal:

Karena A, B dan C adalah sudut-sudut suatu segitiga, maka A plus B plus C equals 180 degree. Sehingga

table attributes columnalign right center left columnspacing 0px end attributes row cell A plus B end cell equals cell 180 degree minus C end cell row cell fraction numerator A plus B over denominator 2 end fraction end cell equals cell fraction numerator 180 degree minus C over denominator 2 end fraction end cell row cell fraction numerator A plus B over denominator 2 end fraction end cell equals cell 90 degree minus 1 half C end cell end table

Dengan menggunakan rumus penjumlahan sinus, sudut rangkap pada sinus dan sudut berelasi, maka

begin mathsize 12px style sin space A plus sin space B plus sin space C equals 2 space sin space open parentheses fraction numerator A plus B over denominator 2 end fraction close parentheses space cos space open parentheses fraction numerator A minus B over denominator 2 end fraction close parentheses plus 2 space sin space 1 half C space cos space 1 half C equals 2 space sin space open parentheses 90 minus 1 half C close parentheses space cos space open parentheses fraction numerator A minus B over denominator 2 end fraction close parentheses plus 2 space cos space open parentheses 90 minus 1 half C close parentheses cos space 1 half C equals 2 space cos space 1 half C space cos space open parentheses fraction numerator A minus B over denominator 2 end fraction close parentheses plus 2 space cos space open parentheses fraction numerator A plus B over denominator 2 end fraction close parentheses cos space 1 half C equals 2 space cos space 1 half C space open square brackets space cos space open parentheses fraction numerator A minus B over denominator 2 end fraction close parentheses plus cos space open parentheses fraction numerator A plus B over denominator 2 end fraction close parentheses close square brackets end style

Selanjutnya ingat rumus jumlah pada cosinus,

begin mathsize 12px style equals 2 space cos space 1 half C open square brackets 2 space cos space 1 half open parentheses fraction numerator A minus B over denominator 2 end fraction plus fraction numerator A plus B over denominator 2 end fraction close parentheses cos space 1 half open parentheses fraction numerator A minus B over denominator 2 end fraction minus fraction numerator A plus B over denominator 2 end fraction close parentheses close square brackets equals 4 space cos space 1 half C open square brackets cos space 1 half A space cos space 1 half B close square brackets space left parenthesis i n g a t space c o s left parenthesis negative x right parenthesis equals c o s space x right parenthesis equals 4 space cos space 1 half A space cos space 1 half B space cos space 1 half C end style

Jadi, terbukti bahwa sin space A plus sin space B plus sin space C equals 4 space cos space 1 half A space cos space 1 half B space cos space 1 half C.

Pembahasan terverifikasi oleh Roboguru

Dijawab oleh:

H. Janatu

Mahasiswa/Alumni Universitas Riau

Terakhir diupdate 06 Oktober 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan yang serupa

Jika A, B, dan C merupakan sudut-sudut dalam sebuah segitiga ABC dan cosθ(sinB+sinC)=sinABuktikan bahwa   tan22θ​=tan(2B​)tan(2C​)

0

Roboguru

Buktikan setiap identitas berikut. sinA+sinB+sinCsin2A+sin2B+sin2C​=8sin(2A​)sin(2B​)sin(2C​)

0

Roboguru

Tanpa menggunakan tabel matematika maupun kalkulator, hitunglah setiap bentuk berikut. cos47∘+sin17∘sin47∘+cos17∘​

0

Roboguru

Jika A+B+C=π, tunjukkan bahwa   (sinA+sinB+sinC)(−sinA+sinB+sinC)(sinA−sinB+sinC)(sinA+sinB−sinC)=4sin2Asin2Bsin2C

0

Roboguru

Jika A+B+C=π, tunjukkan bahwa   cos(2A​)+cos(2B​)+cos(2C​)=4cos(4π+A​)cos(4π+B​)cos(4π−C​)

0

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved