Roboguru

Jabarkanlah setiap bentuk berikut. b. cos5x

Pertanyaan

Jabarkanlah setiap bentuk berikut.

b. cos space 5 x

Pembahasan Soal:

Diketahui bahwa:

table attributes columnalign right center left columnspacing 0px end attributes row cell sin space 2 x end cell equals cell 2 space sin space x space cos space x end cell row cell sin space 3 x end cell equals cell 3 space sin space x minus 4 space sin cubed x end cell row cell cos space 2 x end cell equals cell 2 space cos squared x minus 1 equals 1 minus 2 space sin squared x end cell row cell cos space 3 x end cell equals cell 4 space cos cubed x minus 3 space cos space x end cell end table

Ditanya:cos space 5 x?

Jawab:

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell cos space 5 x end cell row blank equals cell cos space left parenthesis 3 x plus 2 x right parenthesis end cell row blank equals cell cos space 3 x space cos space 2 x minus sin space 3 x space sin space 2 x end cell row blank equals cell open parentheses 4 space cos cubed x minus 3 space cos space x close parentheses open parentheses 2 space cos squared x minus 1 close parentheses minus open parentheses 3 space sin space x minus 4 space sin cubed x close parentheses open parentheses 2 space sin space x space cos space x close parentheses end cell row blank equals cell 8 space cos to the power of 5 x minus 6 space cos cubed x minus 4 space cos cubed x plus 3 space cos space x minus 6 space sin squared x space cos space x plus 8 space sin to the power of 4 x space cos space x end cell row blank equals cell 8 space cos to the power of 5 x minus 10 space cos cubed x plus 3 space cos space x minus 6 left parenthesis 1 minus cos squared x right parenthesis space cos space x plus 8 space open parentheses sin squared x close parentheses squared cos space x end cell row blank equals cell 8 space cos to the power of 5 x minus 10 space cos cubed x plus 3 space cos space x minus 6 space cos space x plus 6 space cos cubed x plus 8 open parentheses 1 minus cos squared x close parentheses squared cos space x end cell row blank equals cell 8 space cos to the power of 5 x minus 10 space cos cubed x minus 3 space cos space x plus 6 space cos cubed x plus 8 left parenthesis 1 minus 2 space cos squared x plus cos to the power of 4 x right parenthesis cos space x end cell row blank equals cell 8 space cos to the power of 5 x minus 4 space cos cubed x minus 3 space cos space x plus 8 space cos space x minus 16 space cos cubed x plus 8 space cos to the power of 5 x end cell row blank equals cell 16 space cos to the power of 5 x minus 20 space cos cubed x plus 5 space cos space x end cell end table end style

Jadi, cos space 5 x equals 16 space cos to the power of 5 x minus 20 space cos cubed x plus 5 space cos space x.

Pembahasan terverifikasi oleh Roboguru

Dijawab oleh:

E. Lestari

Mahasiswa/Alumni Universitas Sebelas Maret

Terakhir diupdate 16 September 2021

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

Pertanyaan yang serupa

6. Jika cosx=21​, maka cos3x sama dengan ....

1

Roboguru

Jika cos(x+15∘)=a dengan 0∘≤x≤360∘, nilai dari ekspresi cos(2x+60∘) sama dengan ...

0

Roboguru

Jika A+B+C=π, buktikan bahwa: b. sinA+sinB−sinC=4sin(2A​)⋅sin(2B​)⋅sin(2C​)

0

Roboguru

cos6A−2cos4A−cos2A+2=...

0

Roboguru

Nilai 2sin105∘cos3105∘−2sin3105∘cos105∘ adalah ....

5

Roboguru

Roboguru sudah bisa jawab 91.4% pertanyaan dengan benar

Tapi Roboguru masih mau belajar. Menurut kamu pembahasan kali ini sudah membantu, belum?

Membantu

Kurang Membantu

Apakah pembahasan ini membantu?

Belum menemukan yang kamu cari?

Post pertanyaanmu ke Tanya Jawab, yuk

Mau Bertanya

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Ruangguru

Produk Ruangguru

Produk Lainnya

Hubungi Kami

Ikuti Kami

©2021 Ruangguru. All Rights Reserved