Iklan

Iklan

Pertanyaan

4. Buktikan bahwa: sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ

4. Buktikan bahwa:

  

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

terbukti bahwa .space 

Iklan

Pembahasan

Ingat kembali: rumus sinus untuk penjumlahan dua sudut: sin ( α + β ) = sin α ⋅ cos β + cos α ⋅ sin β rumus cosinus untuk penjumlahan dua sudut: cos ( α + β ) = cos α ⋅ cos β + sin α ⋅ sin β rumus sinus untuk sudut ganda: sin 2 α = 2 ⋅ sin α ⋅ cos α rumus cosinus untuk sudut ganda: cos 2 α = cos 2 α − sin 2 α identitas trigonometri: sin 2 α + cos 2 α = 1 , cos 2 α = 1 − sin 2 α , dan sin 2 α = 1 − cos 2 α rumus pemfaktoran pangkat tiga: a 2 − b 2 = ( a − b ) ( a + b ) dan a 3 − b 3 = ( a − b ) ( a 2 + b 2 + ab ) Oleh karena itu,dapat diperoleh rumus berikut: sin 3 α sin 3 α ​ = = = = = = = = = ​ sin ( 2 α + α ) sin 2 α ⋅ cos α + cos 2 α ⋅ sin α ( 2 ⋅ sin α ⋅ cos α ) ⋅ cos α + ( cos 2 α − sin 2 α ) ⋅ sin α 2 ⋅ sin α ⋅ cos 2 α + sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ ( 1 − sin 2 α ) − sin 3 α 3 ⋅ sin α ⋅ 1 − 3 ⋅ sin α ⋅ sin 2 α − sin 3 α 3 ⋅ sin α − 3 ⋅ sin 3 α − sin 3 α 3 ⋅ sin α − 4 ⋅ sin 3 α ​ dan cos 3 α cos 3 α ​ = = = = = = = = = = ​ cos ( 2 α + α ) cos 2 α ⋅ cos α − sin 2 α ⋅ sin α ( 2 ⋅ cos 2 α − 1 ) ⋅ co s α − ( 2 ⋅ sin α ⋅ cos α ) ⋅ sin α 2 ⋅ cos 3 α − co s α − 2 ⋅ sin 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ 1 ⋅ cos α + 2 ⋅ cos 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α + 2 ⋅ cos 3 α 2 ⋅ cos 3 α + 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α 4 ⋅ cos 3 α − 3 ⋅ cos α ​ sehingga ​ = = = = = = = = = = = = = = = ​ sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ ( 3 ⋅ sin θ − 4 ⋅ sin 3 θ ) ⋅ sin 3 θ + ( 4 ⋅ cos 3 θ − 3 ⋅ cos θ ) ⋅ cos 3 θ 3 ⋅ sin 4 θ − 4 ⋅ sin 6 θ + 4 ⋅ cos 6 θ − 3 ⋅ cos 4 θ 4 ⋅ cos 6 θ − 4 ⋅ sin 6 θ − 3 ⋅ cos 4 θ + 3 ⋅ sin 4 θ 4 ⋅ ( cos 6 θ − sin 6 θ ) − 3 ⋅ ( cos 4 θ − sin 4 θ ) 4 ⋅ ( ( cos 2 θ ) 3 − ( sin 2 θ ) 3 ) − 3 ⋅ ( ( cos 2 θ ) 2 − ( sin 2 θ ) 2 ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ 1 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 2 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( 4 ⋅ cos 4 θ + 4 ⋅ sin 4 θ + 4 ⋅ cos 2 θ ⋅ sin 2 θ ) + ( cos 2 θ − sin 2 θ ) ⋅ ( − 3 ⋅ cos 4 θ − 3 ⋅ sin 4 θ − 6 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ − 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ − sin 2 θ ) 2 ( cos 2 θ − sin 2 θ ) 3 ( cos 2 θ ) 3 cos 3 2 θ ​ Dengan demikian, terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

Ingat kembali:

  • rumus sinus untuk penjumlahan dua sudut: 
  • rumus cosinus untuk penjumlahan dua sudut: 
  • rumus sinus untuk sudut ganda: 
  • rumus cosinus untuk sudut ganda: 
  • identitas trigonometri: , dan 
  • rumus pemfaktoran pangkat tiga:  dan 

Oleh karena itu, dapat diperoleh rumus berikut:

dan

 

sehingga

 

Dengan demikian, terbukti bahwa .space 

Latihan Bab

Konsep Kilat

Jumlah dan Selisih Dua Sudut

Sudut Rangkap dan Sudut Paruh

Perkalian Trigonometri

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

70

Iklan

Iklan

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia