Iklan

Pertanyaan

4. Buktikan bahwa: sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ

4. Buktikan bahwa:

  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

08

:

58

:

26

Klaim

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

terbukti bahwa .space 

Pembahasan

Ingat kembali: rumus sinus untuk penjumlahan dua sudut: sin ( α + β ) = sin α ⋅ cos β + cos α ⋅ sin β rumus cosinus untuk penjumlahan dua sudut: cos ( α + β ) = cos α ⋅ cos β + sin α ⋅ sin β rumus sinus untuk sudut ganda: sin 2 α = 2 ⋅ sin α ⋅ cos α rumus cosinus untuk sudut ganda: cos 2 α = cos 2 α − sin 2 α identitas trigonometri: sin 2 α + cos 2 α = 1 , cos 2 α = 1 − sin 2 α , dan sin 2 α = 1 − cos 2 α rumus pemfaktoran pangkat tiga: a 2 − b 2 = ( a − b ) ( a + b ) dan a 3 − b 3 = ( a − b ) ( a 2 + b 2 + ab ) Oleh karena itu,dapat diperoleh rumus berikut: sin 3 α sin 3 α ​ = = = = = = = = = ​ sin ( 2 α + α ) sin 2 α ⋅ cos α + cos 2 α ⋅ sin α ( 2 ⋅ sin α ⋅ cos α ) ⋅ cos α + ( cos 2 α − sin 2 α ) ⋅ sin α 2 ⋅ sin α ⋅ cos 2 α + sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ ( 1 − sin 2 α ) − sin 3 α 3 ⋅ sin α ⋅ 1 − 3 ⋅ sin α ⋅ sin 2 α − sin 3 α 3 ⋅ sin α − 3 ⋅ sin 3 α − sin 3 α 3 ⋅ sin α − 4 ⋅ sin 3 α ​ dan cos 3 α cos 3 α ​ = = = = = = = = = = ​ cos ( 2 α + α ) cos 2 α ⋅ cos α − sin 2 α ⋅ sin α ( 2 ⋅ cos 2 α − 1 ) ⋅ co s α − ( 2 ⋅ sin α ⋅ cos α ) ⋅ sin α 2 ⋅ cos 3 α − co s α − 2 ⋅ sin 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ 1 ⋅ cos α + 2 ⋅ cos 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α + 2 ⋅ cos 3 α 2 ⋅ cos 3 α + 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α 4 ⋅ cos 3 α − 3 ⋅ cos α ​ sehingga ​ = = = = = = = = = = = = = = = ​ sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ ( 3 ⋅ sin θ − 4 ⋅ sin 3 θ ) ⋅ sin 3 θ + ( 4 ⋅ cos 3 θ − 3 ⋅ cos θ ) ⋅ cos 3 θ 3 ⋅ sin 4 θ − 4 ⋅ sin 6 θ + 4 ⋅ cos 6 θ − 3 ⋅ cos 4 θ 4 ⋅ cos 6 θ − 4 ⋅ sin 6 θ − 3 ⋅ cos 4 θ + 3 ⋅ sin 4 θ 4 ⋅ ( cos 6 θ − sin 6 θ ) − 3 ⋅ ( cos 4 θ − sin 4 θ ) 4 ⋅ ( ( cos 2 θ ) 3 − ( sin 2 θ ) 3 ) − 3 ⋅ ( ( cos 2 θ ) 2 − ( sin 2 θ ) 2 ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ 1 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 2 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( 4 ⋅ cos 4 θ + 4 ⋅ sin 4 θ + 4 ⋅ cos 2 θ ⋅ sin 2 θ ) + ( cos 2 θ − sin 2 θ ) ⋅ ( − 3 ⋅ cos 4 θ − 3 ⋅ sin 4 θ − 6 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ − 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ − sin 2 θ ) 2 ( cos 2 θ − sin 2 θ ) 3 ( cos 2 θ ) 3 cos 3 2 θ ​ Dengan demikian, terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

Ingat kembali:

  • rumus sinus untuk penjumlahan dua sudut: 
  • rumus cosinus untuk penjumlahan dua sudut: 
  • rumus sinus untuk sudut ganda: 
  • rumus cosinus untuk sudut ganda: 
  • identitas trigonometri: , dan 
  • rumus pemfaktoran pangkat tiga:  dan 

Oleh karena itu, dapat diperoleh rumus berikut:

dan

 

sehingga

 

Dengan demikian, terbukti bahwa .space 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

3

Iklan

Pertanyaan serupa

cos 6 A − 2 cos 4 A − cos 2 A + 2 = ...

5

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia