Iklan

Pertanyaan

4. Buktikan bahwa: sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ

4. Buktikan bahwa:

  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

01

:

49

:

18

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

terbukti bahwa .space 

Pembahasan

Ingat kembali: rumus sinus untuk penjumlahan dua sudut: sin ( α + β ) = sin α ⋅ cos β + cos α ⋅ sin β rumus cosinus untuk penjumlahan dua sudut: cos ( α + β ) = cos α ⋅ cos β + sin α ⋅ sin β rumus sinus untuk sudut ganda: sin 2 α = 2 ⋅ sin α ⋅ cos α rumus cosinus untuk sudut ganda: cos 2 α = cos 2 α − sin 2 α identitas trigonometri: sin 2 α + cos 2 α = 1 , cos 2 α = 1 − sin 2 α , dan sin 2 α = 1 − cos 2 α rumus pemfaktoran pangkat tiga: a 2 − b 2 = ( a − b ) ( a + b ) dan a 3 − b 3 = ( a − b ) ( a 2 + b 2 + ab ) Oleh karena itu,dapat diperoleh rumus berikut: sin 3 α sin 3 α ​ = = = = = = = = = ​ sin ( 2 α + α ) sin 2 α ⋅ cos α + cos 2 α ⋅ sin α ( 2 ⋅ sin α ⋅ cos α ) ⋅ cos α + ( cos 2 α − sin 2 α ) ⋅ sin α 2 ⋅ sin α ⋅ cos 2 α + sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ cos 2 α − sin 3 α 3 ⋅ sin α ⋅ ( 1 − sin 2 α ) − sin 3 α 3 ⋅ sin α ⋅ 1 − 3 ⋅ sin α ⋅ sin 2 α − sin 3 α 3 ⋅ sin α − 3 ⋅ sin 3 α − sin 3 α 3 ⋅ sin α − 4 ⋅ sin 3 α ​ dan cos 3 α cos 3 α ​ = = = = = = = = = = ​ cos ( 2 α + α ) cos 2 α ⋅ cos α − sin 2 α ⋅ sin α ( 2 ⋅ cos 2 α − 1 ) ⋅ co s α − ( 2 ⋅ sin α ⋅ cos α ) ⋅ sin α 2 ⋅ cos 3 α − co s α − 2 ⋅ sin 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ ( 1 − cos 2 α ) ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ 1 ⋅ cos α + 2 ⋅ cos 2 α ⋅ cos α 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α + 2 ⋅ cos 3 α 2 ⋅ cos 3 α + 2 ⋅ cos 3 α − co s α − 2 ⋅ cos α 4 ⋅ cos 3 α − 3 ⋅ cos α ​ sehingga ​ = = = = = = = = = = = = = = = ​ sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ ( 3 ⋅ sin θ − 4 ⋅ sin 3 θ ) ⋅ sin 3 θ + ( 4 ⋅ cos 3 θ − 3 ⋅ cos θ ) ⋅ cos 3 θ 3 ⋅ sin 4 θ − 4 ⋅ sin 6 θ + 4 ⋅ cos 6 θ − 3 ⋅ cos 4 θ 4 ⋅ cos 6 θ − 4 ⋅ sin 6 θ − 3 ⋅ cos 4 θ + 3 ⋅ sin 4 θ 4 ⋅ ( cos 6 θ − sin 6 θ ) − 3 ⋅ ( cos 4 θ − sin 4 θ ) 4 ⋅ ( ( cos 2 θ ) 3 − ( sin 2 θ ) 3 ) − 3 ⋅ ( ( cos 2 θ ) 2 − ( sin 2 θ ) 2 ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ 1 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ + sin 2 θ ) 2 4 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + cos 2 θ ⋅ sin 2 θ ) − 3 ⋅ ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ + 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( 4 ⋅ cos 4 θ + 4 ⋅ sin 4 θ + 4 ⋅ cos 2 θ ⋅ sin 2 θ ) + ( cos 2 θ − sin 2 θ ) ⋅ ( − 3 ⋅ cos 4 θ − 3 ⋅ sin 4 θ − 6 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 4 θ + sin 4 θ − 2 ⋅ cos 2 θ ⋅ sin 2 θ ) ( cos 2 θ − sin 2 θ ) ⋅ ( cos 2 θ − sin 2 θ ) 2 ( cos 2 θ − sin 2 θ ) 3 ( cos 2 θ ) 3 cos 3 2 θ ​ Dengan demikian, terbukti bahwa sin 3 θ ⋅ sin 3 θ + cos 3 θ ⋅ cos 3 θ = cos 3 2 θ .

Ingat kembali:

  • rumus sinus untuk penjumlahan dua sudut: 
  • rumus cosinus untuk penjumlahan dua sudut: 
  • rumus sinus untuk sudut ganda: 
  • rumus cosinus untuk sudut ganda: 
  • identitas trigonometri: , dan 
  • rumus pemfaktoran pangkat tiga:  dan 

Oleh karena itu, dapat diperoleh rumus berikut:

dan

 

sehingga

 

Dengan demikian, terbukti bahwa .space 

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

3

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!