Iklan

Pertanyaan

Hasil dari ∫ x 2 e 2 x d x adalah ...

Hasil dari adalah ...

  1. begin mathsize 14px style e to the power of 2 x end exponent over 2 open parentheses 2 x squared minus 2 x plus 1 close parentheses plus C end style

  2. begin mathsize 14px style e to the power of 2 x end exponent over 4 open parentheses 2 x squared minus 2 x plus 1 close parentheses plus C end style

  3. begin mathsize 14px style e to the power of 2 x end exponent over 2 open parentheses 2 x squared plus 2 x plus 1 close parentheses plus C end style

  4. begin mathsize 14px style e to the power of 2 x end exponent over 4 open parentheses 2 x squared plus 2 x plus 1 close parentheses plus C end style

  5. begin mathsize 14px style e to the power of 2 x end exponent over 4 open parentheses 2 x squared minus 2 x minus 1 close parentheses plus C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

21

:

44

:

45

Klaim

Iklan

N. Rahayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Jakarta

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah B.

jawaban yang tepat adalah B.

Pembahasan

Dari soal diketahui Kita terapkan metode integral parsial pada bentuk integral di atas. Misalkan dan , maka dan Kemudian, perhatikan perhitungan berikut, Selanjutnya, perhatikan integral berikut. Akan digunakan metode integral parsial untuk menyelesaikan integral tersebut. Misalkan p = x dan , maka dan Sehingga diperoleh Jadi, jawaban yang tepat adalah B.

Dari soal diketahui

begin mathsize 14px style integral x squared e to the power of 2 x end exponent blank d x end style

Kita terapkan metode integral parsial pada bentuk integral di atas.

Misalkan begin mathsize 14px style u equals x squared end style dan begin mathsize 14px style fraction numerator d v over denominator d x end fraction equals e to the power of 2 x end exponent end style, maka

begin mathsize 14px style fraction numerator d u over denominator d x end fraction equals 2 x end style 

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row v equals cell integral fraction numerator d v over denominator d x end fraction d x end cell row blank equals cell integral e to the power of 2 x end exponent d x end cell row blank equals cell e to the power of 2 x end exponent over 2 plus C end cell end table end style 

Kemudian, perhatikan perhitungan berikut,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral x squared e to the power of 2 x end exponent blank d x end cell equals cell integral u fraction numerator d v over denominator d x end fraction blank d x end cell row blank equals cell u v minus integral v fraction numerator d u over denominator d x end fraction blank d x end cell row blank equals cell x squared times open parentheses e to the power of 2 x end exponent over 2 close parentheses minus integral e to the power of 2 x end exponent over 2 times 2 x blank d x end cell row blank equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus integral x e to the power of 2 x end exponent blank d x end cell end table end style

Selanjutnya, perhatikan integral berikut.

begin mathsize 14px style integral x squared e to the power of 2 x end exponent blank d x end style

Akan digunakan metode integral parsial untuk menyelesaikan integral tersebut.

Misalkan p = x dan begin mathsize 14px style fraction numerator d v over denominator d x end fraction equals e to the power of 2 x end exponent end style, maka

begin mathsize 14px style fraction numerator d p over denominator d x end fraction equals 1 end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row q equals cell integral fraction numerator d q over denominator d x end fraction d x end cell row blank equals cell integral e to the power of 2 x end exponent d x end cell row blank equals cell e to the power of 2 x end exponent over 2 plus C end cell end table end style

Sehingga diperoleh

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral x squared e to the power of 2 x end exponent blank d x end cell equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus integral x e to the power of 2 x end exponent blank d x end cell row blank equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus open parentheses x times e to the power of 2 x end exponent over 2 minus integral e to the power of 2 x end exponent over 2 blank d x close parentheses end cell row blank equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus open parentheses fraction numerator x e to the power of 2 x end exponent over denominator 2 end fraction minus integral e to the power of 2 x end exponent over 2 blank d x close parentheses end cell row blank equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus open parentheses fraction numerator x e to the power of 2 x end exponent over denominator 2 end fraction minus e to the power of 2 x end exponent over 4 close parentheses plus C end cell row blank equals cell fraction numerator x squared e to the power of 2 x end exponent over denominator 2 end fraction minus fraction numerator x e to the power of 2 x end exponent over denominator 2 end fraction plus e to the power of 2 x end exponent over 4 plus C end cell row blank equals cell e to the power of 2 x end exponent over 4 open parentheses 2 x squared minus 2 x plus 1 close parentheses plus C end cell end table end style   

Jadi, jawaban yang tepat adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Jika hasil dari dapat dinyatakan dalam bentuk , maka nilai dari P + Q + R = ….

1

3.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia