Iklan

Pertanyaan

Diketahui . Jika F(x) = ∫ f(x) dx dan , maka F(x) = ...

Diketahui begin mathsize 14px style f open parentheses x close parentheses equals ln invisible function application open parentheses 1 plus x squared close parentheses end style. Jika F(x) = ∫ f(x)  dx dan begin mathsize 14px style straight F open parentheses 1 close parentheses equals open parentheses ln invisible function application 2 plus pi over 2 close parentheses end style, maka F(x) = ...

  1. begin mathsize 14px style x ln invisible function application open parentheses 1 plus x squared close parentheses minus 2 x minus 2 tan to the power of negative 1 end exponent invisible function application x minus 1 end style 

  2. begin mathsize 14px style x ln invisible function application open parentheses 1 plus x squared close parentheses minus 2 x plus 2 tan to the power of negative 1 end exponent invisible function application x plus 2 end style 

  3. begin mathsize 14px style x ln invisible function application open parentheses 1 plus x squared close parentheses minus 4 x plus 4 tan to the power of negative 1 end exponent invisible function application x minus 2 x end style 

  4. begin mathsize 14px style x ln invisible function application open parentheses 1 plus x squared close parentheses minus 4 x minus 4 tan to the power of negative 1 end exponent invisible function application x plus 1 end style 

  5. begin mathsize 14px style x ln invisible function application open parentheses 1 plus x squared close parentheses minus 4 x plus 2 tan to the power of negative 1 end exponent invisible function application x minus 1 end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

00

:

37

:

55

Klaim

Iklan

N. Rahayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Jakarta

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah B.

jawaban yang benar adalah B.

Pembahasan

Misalkan dan Didapat bahwa dan Karena F(x) = ∫ f(x) dx, maka didapat Kemudian selesaikan bentuk dengan integral substitusi trigonometri. Misalkan Didapat bahwa dan Jadi, Maka didapat Kemudian diketahui pula bahwa , maka Maka diperoleh, Jadi, jawaban yang benar adalah B.

Misalkan

begin mathsize 14px style u equals ln invisible function application open parentheses 1 plus x squared close parentheses end style

dan

begin mathsize 14px style fraction numerator d v over denominator d x end fraction equals 1 end style

Didapat bahwa

begin mathsize 14px style fraction numerator d u over denominator d x end fraction equals fraction numerator 1 over denominator 1 plus x squared end fraction times 2 x fraction numerator d u over denominator d x end fraction equals fraction numerator 2 x over denominator 1 plus x squared end fraction end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row v equals cell integral fraction numerator d v over denominator d x end fraction d x end cell row blank equals cell integral 1 d x end cell row blank equals cell x plus C end cell end table end style

Karena F(x) = ∫ f(x)  dx, maka didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight F open parentheses x close parentheses end cell equals cell integral ln invisible function application open parentheses 1 plus x squared close parentheses d x end cell row blank equals cell integral u times fraction numerator d v over denominator d x end fraction d x end cell row blank equals cell u times v minus integral v times fraction numerator d u over denominator d x end fraction d x end cell row blank equals cell ln invisible function application open parentheses 1 plus x squared close parentheses times x minus integral x times fraction numerator 2 x over denominator open parentheses 1 plus x squared close parentheses end fraction blank d x end cell row blank equals cell x ln invisible function application open parentheses 1 plus x squared close parentheses minus integral fraction numerator 2 x squared over denominator open parentheses 1 plus x squared close parentheses end fraction blank d x end cell end table end style

Kemudian selesaikan bentuk begin mathsize 14px style integral fraction numerator 2 x squared over denominator open parentheses 1 plus x squared close parentheses end fraction blank d x end style dengan integral substitusi trigonometri. Misalkan

begin mathsize 14px style x equals tan invisible function application theta end style

Didapat bahwa

begin mathsize 14px style theta equals tan to the power of negative 1 end exponent invisible function application x end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell fraction numerator d x over denominator d theta end fraction end cell equals cell sec squared invisible function application theta end cell row cell integral fraction numerator d x over denominator d theta end fraction d theta end cell equals cell integral sec squared invisible function application theta d theta end cell row cell integral d x end cell equals cell integral sec squared invisible function application theta d theta end cell end table end style

Jadi,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral fraction numerator 2 x squared over denominator open parentheses 1 plus x squared close parentheses end fraction blank d x end cell equals cell integral fraction numerator 2 tan squared invisible function application theta over denominator open parentheses 1 plus tan squared invisible function application theta close parentheses end fraction times sec squared invisible function application theta blank d theta end cell row blank equals cell integral fraction numerator 2 tan squared invisible function application theta over denominator sec squared invisible function application theta end fraction times sec squared invisible function application theta blank d theta end cell row blank equals cell integral 2 tan squared invisible function application theta blank d theta end cell row blank equals cell 2 integral tan squared invisible function application theta d theta end cell row blank equals cell 2 integral open parentheses sec squared invisible function application theta minus 1 close parentheses d theta end cell row blank equals cell 2 open parentheses tan invisible function application theta minus straight theta close parentheses plus C end cell row blank equals cell 2 tan invisible function application theta minus 2 theta plus C end cell row blank equals cell 2 x minus 2 tan to the power of negative 1 end exponent invisible function application x plus C end cell end table end style

Maka didapat

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight F open parentheses x close parentheses end cell equals cell x ln invisible function application open parentheses 1 plus x squared close parentheses minus integral fraction numerator 2 x squared over denominator open parentheses 1 plus x squared close parentheses end fraction blank d x end cell row blank equals cell x ln invisible function application open parentheses 1 plus x squared close parentheses minus open parentheses 2 x minus 2 tan to the power of negative 1 end exponent invisible function application x close parentheses plus C end cell row blank equals cell x ln invisible function application open parentheses 1 plus x squared close parentheses minus 2 x plus 2 tan to the power of negative 1 end exponent invisible function application x plus C end cell end table end style

Kemudian diketahui pula bahwa undefined, maka

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell straight F open parentheses 1 close parentheses end cell equals cell ln invisible function application 2 plus pi over 2 end cell row cell 1 times ln invisible function application open parentheses 1 plus 1 squared close parentheses minus 2 open parentheses 1 close parentheses plus 2 tan to the power of negative 1 end exponent invisible function application 1 plus C end cell equals cell ln invisible function application 2 plus pi over 2 end cell row cell ln invisible function application open parentheses 1 plus 1 close parentheses minus 2 plus 2 times pi over 4 plus C end cell equals cell ln invisible function application 2 plus pi over 2 end cell row cell ln invisible function application 2 minus 2 plus pi over 2 plus C end cell equals cell ln invisible function application 2 plus pi over 2 end cell row cell negative 2 plus C end cell equals 0 row C equals 2 end table end style

Maka diperoleh,

begin mathsize 14px style straight F open parentheses x close parentheses equals x ln invisible function application open parentheses 1 plus x squared close parentheses minus 2 x plus 2 tan to the power of negative 1 end exponent invisible function application x plus 2 end style

Jadi, jawaban yang benar adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

32

Iklan

Pertanyaan serupa

Jika hasil dari dapat dinyatakan dalam bentuk , maka nilai dari P + Q + R = ….

1

3.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia