Iklan

Pertanyaan

...

begin mathsize 14px style integral open parentheses 2 x squared sin invisible function application 2 x close parentheses d x equals end style...

  1. begin mathsize 14px style open parentheses negative x squared plus 1 half close parentheses sin invisible function application 2 x plus x cos invisible function application 2 x plus C end style

  2. begin mathsize 14px style open parentheses x squared minus 1 half close parentheses sin invisible function application 2 x minus x cos invisible function application 2 x plus C end style

  3. begin mathsize 14px style open parentheses negative x squared plus 1 half close parentheses cos invisible function application 2 x minus x sin invisible function application 2 x plus C end style

  4. begin mathsize 14px style open parentheses x squared minus 1 half close parentheses cos invisible function application 2 x minus x sin invisible function application 2 x plus C end style

  5. begin mathsize 14px style open parentheses negative x squared plus 1 half close parentheses cos invisible function application 2 x plus x sin invisible function application 2 x plus C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

01

:

24

:

23

Klaim

Iklan

N. Rahayu

Master Teacher

Mahasiswa/Alumni Universitas Negeri Jakarta

Jawaban terverifikasi

Pembahasan

Kita cari hasil integral di atas dengan menggunakan integral parsial. Misalkan dan , maka dan Sehingga Selanjutnya, kita gunakan integral parsial kembali untuk mencari hasil ∫x cos⁡2x dx. Misalkan p = x dan , maka dan Sehingga,

Kita cari hasil integral di atas dengan menggunakan integral parsial.

Misalkan begin mathsize 14px style u equals 2 x squared end style dan begin mathsize 14px style fraction numerator d v over denominator d x end fraction equals sin invisible function application 2 x end style, maka

begin mathsize 14px style fraction numerator d u over denominator d x end fraction equals 4 x end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row v equals cell integral fraction numerator d v over denominator d x end fraction d x end cell row blank equals cell integral sin invisible function application 2 x d x end cell row blank equals cell negative 1 half cos invisible function application 2 x plus C end cell end table end style 

Sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral open parentheses 2 x squared sin invisible function application 2 x close parentheses d x end cell equals cell 2 x squared times open parentheses negative 1 half cos invisible function application 2 x close parentheses minus integral open parentheses 4 x close parentheses open parentheses negative 1 half cos invisible function application 2 x close parentheses d x end cell row blank equals cell negative x squared cos invisible function application 2 x plus 2 integral x cos invisible function application 2 x d x end cell end table end style

Selanjutnya, kita gunakan integral parsial kembali untuk mencari hasil ∫x  cos⁡2x dx.

Misalkan p = x dan begin mathsize 14px style fraction numerator d q over denominator d x end fraction equals cos invisible function application 2 x end style, maka

undefined 

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row q equals cell integral fraction numerator d q over denominator d x end fraction d x end cell row blank equals cell integral cos invisible function application 2 x d x end cell row blank equals cell 1 half sin invisible function application 2 x plus C end cell end table end style 

Sehingga,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral open parentheses 2 x squared sin invisible function application 2 x close parentheses d x end cell equals cell negative x squared cos invisible function application 2 x plus 2 integral x cos invisible function application 2 x d x end cell row blank equals cell negative x squared cos invisible function application 2 x plus 2 open square brackets x times open parentheses 1 half sin invisible function application 2 x close parentheses minus integral 1 half sin invisible function application 2 x d x close square brackets end cell row blank equals cell negative x squared cos invisible function application 2 x plus 2 open square brackets 1 half x sin invisible function application 2 x plus 1 fourth cos invisible function application 2 x close square brackets plus C end cell row blank equals cell negative x squared cos invisible function application 2 x plus x sin invisible function application 2 x plus 1 half cos invisible function application 2 x plus C end cell row blank equals cell open parentheses negative x squared plus 1 half close parentheses cos invisible function application 2 x plus x sin invisible function application 2 x plus C end cell end table end style   

 

 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

11

Iklan

Pertanyaan serupa

Hasil dari ∫ x 2 e 2 x d x adalah ...

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia