Iklan

Pertanyaan

Fungsi f ( x ) = 2 sin ( x + π ) cos ( x + π ) terdefinisi pada 0 ≤ x ≤ 2 π . Fungsi tersebut cekung ke bawah pada interval...

Fungsi  terdefinisi pada . Fungsi tersebut cekung ke bawah pada interval...

  1. 0 less than x less than straight pi over 4 space dan space fraction numerator 3 straight pi over denominator 4 end fraction less than x less or equal than straight pi 

  2. 0 less than x less than straight pi over 2 space dan space straight pi less than x less than fraction numerator 3 straight pi over denominator 2 end fraction 

  3. 0 less than x less than straight pi over 2 space dan space fraction numerator 3 straight pi over denominator 2 end fraction less or equal than x less than fraction numerator 5 straight pi over denominator 2 end fraction 

  4. straight pi over 2 less than x less than space dan space fraction numerator 3 straight pi over denominator 2 end fraction less than x less than 2 straight pi 

  5. straight pi over 4 less than x less than fraction numerator 3 straight pi over denominator 4 end fraction space dan space straight pi less than straight x less than fraction numerator 5 straight pi over denominator 4 end fraction 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

00

:

15

:

13

:

10

Klaim

Iklan

Y. Herlanda

Master Teacher

Mahasiswa/Alumni STKIP PGRI Jombang

Jawaban terverifikasi

Jawaban

jawaban yang benar adalah B.

jawaban yang benar adalah B.

Pembahasan

Turunan Pertama pada Fungsi Trigonometri Fungsi ubah menjadi . Gunakan sifat turunan. Turunan adalah . Misal , maka . Dan , maka . Sehingga diperoleh turunan pertama Turunan Kedua pada Fungsi Trigonometri gunakan sifat turunan untuk menentukan turunan keduanya. Turunan adalah . Misal maka . Dan maka . Sehingga diperoleh turunan kedua Titik Stasioner pada Fungsi Trigonometri Untuk , maka Untuk , maka Cekung ke Bawah pada Fungsi Trigonometri Fungsi cekung ke bawah jika . Diagram uji nilai menunjukkan cekung turun pada . Dengan demikian, fungsi cekung ke bawah pada interval . Oleh karena itu, jawaban yang benar adalah B.

Turunan Pertama pada Fungsi Trigonometri

Fungsi f open parentheses x close parentheses equals 2 space sin space open parentheses x plus straight pi close parentheses space cos space open parentheses x plus straight pi close parentheses ubah menjadi f open parentheses x close parentheses equals 2 space fraction numerator sin space 2 open parentheses x plus straight pi close parentheses over denominator 2 end fraction. Gunakan sifat turunan.

Turunan f open parentheses x close parentheses equals u times v adalah f apostrophe open parentheses x close parentheses equals v u apostrophe plus u v apostrophe.

Misal u equals 2, maka u apostrophe equals 0.

Dan v equals fraction numerator sin space 2 open parentheses x plus straight pi close parentheses over denominator 2 end fraction, maka v apostrophe equals 2 space cos space 2 open parentheses x plus straight pi close parentheses.

Sehingga diperoleh turunan pertama

table attributes columnalign right center left columnspacing 0px end attributes row cell f apostrophe open parentheses x close parentheses end cell equals cell v u apostrophe plus u v apostrophe end cell row blank equals cell open parentheses fraction numerator sin space 2 open parentheses x plus straight pi close parentheses over denominator 2 end fraction close parentheses open parentheses 0 close parentheses plus open parentheses 2 close parentheses open parentheses 2 space cos space 2 open parentheses x plus straight pi close parentheses close parentheses end cell row blank equals cell 4 space cos space 2 open parentheses x plus straight pi close parentheses end cell end table 

Turunan Kedua pada Fungsi Trigonometri

f apostrophe open parentheses x close parentheses equals 4 space cos space 2 open parentheses x plus straight pi close parentheses gunakan sifat turunan untuk menentukan turunan keduanya.

Turunan f apostrophe open parentheses x close parentheses equals u apostrophe times v apostrophe  adalah f double apostrophe open parentheses x close parentheses equals v apostrophe u double apostrophe plus u apostrophe v double apostrophe.

Misal u apostrophe equals 4 maka u double apostrophe equals 0.

Dan v apostrophe equals cos space 2 open parentheses x plus straight pi close parentheses maka v double apostrophe equals negative 2 space sin space 2 open parentheses x plus straight pi close parentheses.

Sehingga diperoleh turunan kedua

table attributes columnalign right center left columnspacing 0px end attributes row cell f double apostrophe open parentheses x close parentheses end cell equals cell v apostrophe u double apostrophe plus u apostrophe v double apostrophe end cell row blank equals cell open parentheses cos space 2 open parentheses x plus straight pi close parentheses close parentheses open parentheses 0 close parentheses plus open parentheses 4 close parentheses open parentheses negative 2 space sin space 2 open parentheses x plus straight pi close parentheses close parentheses end cell row blank equals cell negative 8 space sin space 2 open parentheses x plus straight pi close parentheses end cell end table 

Titik Stasioner pada Fungsi Trigonometri

table attributes columnalign right center left columnspacing 0px end attributes row cell f double apostrophe end cell equals 0 row cell negative 8 space sin space 2 open parentheses x plus straight pi close parentheses end cell equals 0 row cell sin space 2 open parentheses x plus straight pi close parentheses end cell equals cell sin space 0 degree space atau space sin space 2 open parentheses x plus straight pi close parentheses equals sin space straight pi end cell row cell 2 open parentheses x plus straight pi close parentheses end cell equals cell 0 degree plus k cross times 2 straight pi space atau space 2 open parentheses straight x plus straight pi close parentheses equals straight pi plus straight k cross times 2 straight pi end cell row cell straight x plus straight pi end cell equals cell fraction numerator 2 kπ over denominator 2 end fraction space atau space straight x plus straight pi equals straight pi over 2 plus fraction numerator 2 kπ over denominator 2 end fraction end cell row straight x equals cell kπ minus straight pi space atau space straight x equals straight pi over 2 minus straight pi plus kπ end cell row straight x equals cell kπ minus straight pi space atau space straight x equals kπ minus straight pi over 2 end cell end table 

Untuk k equals 1, maka

table attributes columnalign right center left columnspacing 0px end attributes row x equals cell k straight pi minus straight pi end cell row blank equals cell open parentheses 1 close parentheses straight pi minus straight pi end cell row blank equals 0 row blank blank atau row straight x equals cell kπ minus straight pi over 2 end cell row blank equals cell open parentheses 1 close parentheses straight pi minus straight pi over 2 end cell row blank equals cell straight pi over 2 end cell end table  

Untuk k equals 2, maka

table attributes columnalign right center left columnspacing 0px end attributes row x equals cell k straight pi minus straight pi end cell row blank equals cell open parentheses 2 close parentheses straight pi minus straight pi end cell row blank equals straight pi row blank blank atau row straight x equals cell kπ minus straight pi over 2 end cell row blank equals cell open parentheses 2 close parentheses straight pi minus straight pi over 2 end cell row blank equals cell fraction numerator 4 straight pi over denominator 2 end fraction minus straight pi over 2 end cell row blank equals cell fraction numerator 3 straight pi over denominator 2 end fraction end cell end table

Cekung ke Bawah pada Fungsi Trigonometri

Fungsi f cekung ke bawah jika f double apostrophe less than 0. Diagram uji nilai f double apostrophe open parentheses x close parentheses menunjukkan f double apostrophe cekung turun pada 0 less than x less than straight pi over 2 space dan space straight pi less than straight x less than fraction numerator 3 straight pi over denominator 2 end fraction.

Dengan demikian, fungsi cekung ke bawah pada interval 0 less than x less than straight pi over 2 space dan space straight pi less than straight x less than fraction numerator 3 straight pi over denominator 2 end fraction.

Oleh karena itu, jawaban yang benar adalah B.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Akmal Hamidii

Pembahasan terpotong

Saarah Amanda Azaen

Makasih ❤️

Iklan

Pertanyaan serupa

Fungsi f ( x ) = 2 sin ( x − 4 π ​ ) mempunyai daerah asal 0 ≤ x ≤ 2 π . Fungsi tersebut cekung ke bawah pada interval...

10

4.4

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia