Iklan

Pertanyaan

Fungsi g ( x ) = sin ( x − 2 π ​ ) + cos ( x − 2 π ​ ) didefinisikan pada interval 0 < x < 2 π . Tentukan : b. interval fungsi g naik;

Fungsi  didefinisikan pada interval . Tentukan :

b. interval fungsi  naik;

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

00

:

16

:

21

Klaim

Iklan

G. Albiah

Master Teacher

Mahasiswa/Alumni Universitas Galuh Ciamis

Jawaban terverifikasi

Jawaban

naik pada interval dan .

 g left parenthesis x right parenthesis equals sin open parentheses x minus straight pi over 2 close parentheses plus cos open parentheses x minus straight pi over 2 close parentheses naik pada interval 0 less than x less than fraction numerator 3 straight pi over denominator 4 end fraction dan fraction numerator 7 straight pi over denominator 4 end fraction less than x less than 2 straight pi.

Pembahasan

Cari turunan pertama dari . Maka Syarat Stasioner, Di dapatkan titik stasionernya adalah dan . Fungsi naik saat . Uji titik, Jadi, naik pada interval dan .

Cari turunan pertama dari g left parenthesis x right parenthesis equals sin open parentheses x minus straight pi over 2 close parentheses plus cos open parentheses x minus straight pi over 2 close parentheses. Maka

g apostrophe left parenthesis x right parenthesis equals open parentheses cos open parentheses x minus straight pi over 2 close parentheses minus sin open parentheses x minus straight pi over 2 close parentheses close parentheses

Syarat Stasioner,

table attributes columnalign right center left columnspacing 0px end attributes row cell g apostrophe left parenthesis x right parenthesis end cell equals 0 row cell open parentheses cos open parentheses x minus straight pi over 2 close parentheses minus sin open parentheses x minus straight pi over 2 close parentheses close parentheses end cell equals 0 row cell cos open parentheses x minus straight pi over 2 close parentheses end cell equals cell sin open parentheses x minus straight pi over 2 close parentheses end cell row cell fraction numerator sin open parentheses x minus straight pi over 2 close parentheses over denominator cos open parentheses x minus straight pi over 2 close parentheses end fraction end cell equals 1 row cell tan open parentheses x minus straight pi over 2 close parentheses end cell equals 1 row cell ta n open parentheses x minus straight pi over 2 close parentheses end cell equals cell tan straight pi over 4 end cell row cell x minus straight pi over 2 end cell equals cell straight pi over 4 plus k straight pi end cell row straight x equals cell straight pi over 4 plus straight pi over 2 plus kπ end cell row straight x equals cell straight pi over 4 plus fraction numerator 2 straight pi over denominator 4 end fraction plus kπ end cell row straight x equals cell fraction numerator 3 straight pi over denominator 4 end fraction plus kπ end cell row straight k equals 0 row straight x equals cell fraction numerator 3 straight pi over denominator 4 end fraction plus 0 times straight pi end cell row straight x equals cell fraction numerator 3 straight pi over denominator 4 end fraction end cell row straight k equals 1 row straight x equals cell fraction numerator 3 straight pi over denominator 4 end fraction plus 1 times straight pi end cell row straight x equals cell fraction numerator 7 straight pi over denominator 4 end fraction end cell row blank blank blank end table

Di dapatkan titik stasionernya adalah x equals fraction numerator 3 straight pi over denominator 4 end fraction dan x equals fraction numerator 7 straight pi over denominator 4 end fraction.

Fungsi naik saat g apostrophe left parenthesis x right parenthesis greater than 0

Uji titik,

table attributes columnalign right center left columnspacing 0px end attributes row cell g apostrophe left parenthesis x right parenthesis end cell equals cell open parentheses cos open parentheses x minus straight pi over 2 close parentheses minus sin open parentheses x minus straight pi over 2 close parentheses close parentheses end cell row cell g apostrophe left parenthesis 90 right parenthesis end cell equals cell open parentheses cos open parentheses 90 minus 90 close parentheses minus sin open parentheses 90 minus 90 close parentheses close parentheses end cell row blank equals cell open parentheses cos space 0 minus sin space 0 close parentheses end cell row blank equals cell 1 minus 0 end cell row blank equals 1 row cell g apostrophe left parenthesis x right parenthesis end cell greater than 0 row blank blank blank row cell g apostrophe left parenthesis 180 right parenthesis end cell equals cell open parentheses cos open parentheses 180 minus 90 close parentheses minus sin open parentheses 180 minus 90 close parentheses close parentheses end cell row blank equals cell open parentheses cos space 90 minus sin space 90 close parentheses end cell row blank equals cell 0 minus 1 end cell row blank equals cell negative 1 end cell row cell g apostrophe left parenthesis x right parenthesis end cell less than 0 row blank blank blank row cell g apostrophe left parenthesis 330 right parenthesis end cell equals cell open parentheses cos open parentheses 330 minus 90 close parentheses minus sin open parentheses 330 minus 90 close parentheses close parentheses end cell row blank equals cell open parentheses cos space 240 minus sin 240 close parentheses end cell row blank equals cell negative 1 half minus open parentheses negative 1 half square root of 3 close parentheses end cell row blank equals cell negative 1 half plus 1 half square root of 3 end cell row blank equals cell negative 0 comma 5 plus 0 comma 86 end cell row blank equals cell 0 comma 36 end cell row cell g apostrophe left parenthesis x right parenthesis end cell greater than 0 end table

 

Jadi, g left parenthesis x right parenthesis equals sin open parentheses x minus straight pi over 2 close parentheses plus cos open parentheses x minus straight pi over 2 close parentheses naik pada interval 0 less than x less than fraction numerator 3 straight pi over denominator 4 end fraction dan fraction numerator 7 straight pi over denominator 4 end fraction less than x less than 2 straight pi.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Mutiara Dwi Hapsari

Pembahasan lengkap banget Makasih ❤️ Mudah dimengerti

Ahmad Lafif Arham Ibad

Jawaban tidak sesuai

Iklan

Pertanyaan serupa

Fungsi g ( x ) = sin ( x − 2 π ​ ) + cos ( x − 2 π ​ ) didefinisikan pada interval 0 < x < 2 π . Tentukan : b. iinterval grafik fungsi g cekung ke bawah.

1

4.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia