Iklan

Pertanyaan

Find the value of the following limit. b. x → 0 lim ​ [ ( x − 2 1 ​ ) 2 − ( 2 x + x 2 1 ​ ) ]

Find the value of the following limit.

b.  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

00

:

58

:

21

Klaim

Iklan

D. Rajib

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Malang

Jawaban terverifikasi

Jawaban

nilai dari adalah

nilai dari begin mathsize 14px style limit as x rightwards arrow 0 of open square brackets open parentheses x minus 1 half close parentheses squared minus open parentheses 2 x plus 1 over x squared close parentheses close square brackets end style adalah 1 fourth 

Pembahasan

Selesaikan limit tersebut dengan metode substitusiterlebih dahulu. Karena jika disubtitusikan secara langsungmenghasilkan bentuk tak tentu maka gunakan metode lainuntuk menyelesaikan limit tersebut Ubah bentuk limittersebut menjadi bentuk Sehingga Ingat kembali bahwa Maka Jadi, nilai dari adalah

Selesaikan limit tersebut dengan metode substitusi terlebih dahulu.

table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow 0 of open square brackets open parentheses x minus 1 half close parentheses squared minus open parentheses 2 x plus 1 over x squared close parentheses close square brackets end cell equals cell open square brackets open parentheses 0 minus 1 half close parentheses squared minus open parentheses 2 left parenthesis 0 right parenthesis plus 1 over 0 squared close parentheses close square brackets end cell end table  

Karena jika disubtitusikan secara langsung menghasilkan bentuk tak tentu maka gunakan metode lain untuk menyelesaikan limit tersebut

Ubah bentuk limit tersebut menjadi bentuk limit as x rightwards arrow c of space fraction numerator f left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction 

Sehingga

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell limit as x rightwards arrow 0 of open square brackets open parentheses x minus 1 half close parentheses squared minus open parentheses 2 x plus 1 over x squared close parentheses close square brackets end cell equals cell limit as x rightwards arrow 0 of open square brackets open parentheses x squared minus x plus 1 fourth close parentheses minus open parentheses fraction numerator 2 x cubed plus 1 over denominator x squared end fraction close parentheses close square brackets end cell row blank equals cell limit as x rightwards arrow 0 of open square brackets fraction numerator x squared left parenthesis x squared minus x plus begin display style 1 fourth end style right parenthesis minus 2 x cubed plus 1 over denominator x squared end fraction close square brackets end cell row blank equals cell limit as x rightwards arrow 0 of space open square brackets fraction numerator x to the power of 4 minus x cubed plus begin display style 1 fourth x squared end style minus 2 x cubed plus 1 over denominator x squared end fraction close square brackets end cell row blank equals cell limit as x rightwards arrow 0 of space open square brackets fraction numerator x to the power of 4 minus 3 x cubed plus begin display style 1 fourth x squared end style plus 1 over denominator x squared end fraction close square brackets end cell end table end style  

Ingat kembali bahwa 

limit as x rightwards arrow c of space fraction numerator f left parenthesis x right parenthesis over denominator g left parenthesis x right parenthesis end fraction equals limit as x rightwards arrow c of space fraction numerator f apostrophe apostrophe left parenthesis x right parenthesis over denominator g apostrophe apostrophe left parenthesis x right parenthesis end fraction 

Maka

table attributes columnalign right center left columnspacing 0px end attributes row cell size 12px lim with size 12px x size 12px rightwards arrow size 12px 0 below size 12px space begin mathsize 12px style fraction numerator x to the power of 4 minus 3 x cubed plus begin display style 1 fourth x squared end style plus 1 over denominator x squared end fraction end style end cell size 12px equals cell size 12px lim with size 12px x size 12px rightwards arrow size 12px 0 below size 12px space begin mathsize 12px style fraction numerator 4 x cubed minus 9 x squared plus begin display style 1 half x end style over denominator 2 x end fraction end style end cell row blank size 12px equals cell size 12px lim with size 12px x size 12px rightwards arrow size 12px 0 below size 12px space begin mathsize 12px style fraction numerator 12 x squared minus 18 x plus begin display style 1 half end style over denominator 2 end fraction end style end cell row blank size 12px equals cell fraction numerator size 12px 12 size 12px left parenthesis size 12px 0 size 12px right parenthesis to the power of size 12px 2 size 12px minus size 12px 12 size 12px left parenthesis size 12px 0 size 12px right parenthesis size 12px plus begin mathsize 12px display style 1 half end style over denominator size 12px 2 end fraction end cell row blank size 12px equals cell size 12px 1 over size 12px 4 end cell end table 

Jadi, nilai dari begin mathsize 14px style limit as x rightwards arrow 0 of open square brackets open parentheses x minus 1 half close parentheses squared minus open parentheses 2 x plus 1 over x squared close parentheses close square brackets end style adalah 1 fourth 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Hitunglah: a. x → 3 lim ​ x 3 − 7 x 2 + 15 x − 9 x 3 − 8 x 2 + 21 x − 18 ​

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia