Iklan

Pertanyaan

Diketahui matriks P = ⎝ ⎛ ​ 2 4 5 ​ 5 5 8 ​ 10 − 11 2 ​ ⎠ ⎞ ​ , Q = ⎝ ⎛ ​ 7 − 3 1 ​ − 3 2 0 ​ − 6 3 − 1 ​ ⎠ ⎞ ​ . Jika P × Q menghasilkan matriks R . Tentukan invers matriks !

Diketahui matriks . Jika  menghasilkan matriks . Tentukan invers matriks R!

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

20

:

28

:

27

Klaim

Iklan

S. Ayu

Master Teacher

Mahasiswa/Alumni Universitas Muhammadiyah Prof. DR. Hamka

Jawaban terverifikasi

Pembahasan

Tentukan terlebih dahulu matriks , yaitu hasil perkalian matriks dan . Diperoleh matriks . Setelah itu, gunakan tentukan invers matriks berordo , dengan rumus. Tentukan masing-masing komponen yang ada dalam perhitungan invers matriks. Determinan matriks Gunakan metode sarus untuk mengetahui determinannya. Adjoin matriks Gunakan metode kofaktor untuk mengetahui adjoinnya. Ingatlah bahwa: Diperoleh: Akibatnya, Jadi, Maka,invers matriks adalah .

Tentukan terlebih dahulu matriks R, yaitu hasil perkalian matriks P dan Q.

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row R equals cell P cross times Q end cell row blank equals cell open parentheses table row 2 5 10 row 4 5 cell negative 11 end cell row 5 8 2 end table close parentheses cross times open parentheses table row 7 cell negative 3 end cell cell negative 6 end cell row cell negative 3 end cell 2 3 row 1 0 cell negative 1 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 2 open parentheses 7 close parentheses plus 5 open parentheses negative 3 close parentheses plus 10 open parentheses 1 close parentheses end cell cell 2 open parentheses negative 3 close parentheses plus 5 open parentheses 2 close parentheses plus 10 open parentheses 0 close parentheses end cell cell 2 open parentheses negative 6 close parentheses plus 5 open parentheses 3 close parentheses plus 10 open parentheses negative 1 close parentheses end cell row cell 4 open parentheses 7 close parentheses plus 5 open parentheses negative 3 close parentheses plus open parentheses negative 11 close parentheses open parentheses 1 close parentheses end cell cell 4 open parentheses negative 3 close parentheses plus 5 open parentheses 2 close parentheses plus open parentheses negative 11 close parentheses open parentheses 0 close parentheses end cell cell 4 open parentheses negative 6 close parentheses plus 5 open parentheses 3 close parentheses plus open parentheses negative 11 close parentheses open parentheses negative 1 close parentheses end cell row cell 5 open parentheses 7 close parentheses plus 8 open parentheses negative 3 close parentheses plus 2 open parentheses 1 close parentheses end cell cell 5 open parentheses negative 3 close parentheses plus 8 open parentheses 2 close parentheses plus 2 open parentheses 0 close parentheses end cell cell 5 open parentheses negative 6 close parentheses plus 8 open parentheses 3 close parentheses plus 2 open parentheses negative 1 close parentheses end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 14 plus open parentheses negative 15 close parentheses plus 10 end cell cell negative 6 plus 10 plus 0 end cell cell negative 12 plus 15 plus open parentheses negative 10 close parentheses end cell row cell 28 plus open parentheses negative 15 close parentheses minus 11 end cell cell negative 12 plus 10 plus 0 end cell cell negative 24 plus 15 plus 11 end cell row cell 35 plus open parentheses negative 24 close parentheses plus 2 end cell cell negative 15 plus 16 plus 0 end cell cell negative 30 plus 24 plus open parentheses negative 2 close parentheses end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 14 minus 15 plus 10 end cell 4 cell 3 minus 10 end cell row cell 28 minus 15 minus 11 end cell cell negative 2 end cell 2 row cell 35 minus 24 plus 2 end cell 1 cell negative 6 minus 2 end cell end table close parentheses end cell row blank equals cell open parentheses table row 9 4 cell negative 7 end cell row 2 cell negative 2 end cell 2 row 13 1 cell negative 8 end cell end table close parentheses end cell end table end style

Diperoleh matriks R equals open parentheses table row 9 4 cell negative 7 end cell row 2 cell negative 2 end cell 2 row 13 1 cell negative 8 end cell end table close parentheses.

Setelah itu, gunakan tentukan invers matriks berordo 3 cross times 3, dengan rumus.

R to the power of negative 1 end exponent equals fraction numerator 1 over denominator det space R end fraction times adj space open parentheses R close parentheses

Tentukan masing-masing komponen yang ada dalam perhitungan invers matriks.

  • Determinan matriks R

Gunakan metode sarus untuk mengetahui determinannya.

R equals open vertical bar table row 9 4 cell negative 7 end cell row 2 cell negative 2 end cell 2 row 13 1 cell negative 8 end cell end table close vertical bar table row 9 4 row 2 cell negative 2 end cell row 13 1 end table

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell det space R end cell equals cell open parentheses 9 times open parentheses negative 2 close parentheses times open parentheses negative 8 close parentheses plus 4 times 2 times 13 plus open parentheses negative 7 close parentheses times 2 times 1 close parentheses minus open parentheses open parentheses negative 7 close parentheses times open parentheses negative 2 close parentheses times 13 plus 9 times 2 times 1 plus 4 times 2 times open parentheses negative 8 close parentheses close parentheses end cell row blank equals cell open parentheses 144 plus 104 plus open parentheses negative 14 close parentheses close parentheses minus open parentheses 182 plus 18 plus open parentheses negative 64 close parentheses close parentheses end cell row blank equals cell open parentheses 248 minus 14 close parentheses minus open parentheses 200 minus 64 close parentheses end cell row blank equals cell 234 minus 136 end cell row blank equals 98 end table end style

  • Adjoin matriks R

Gunakan metode kofaktor untuk mengetahui adjoinnya.

Ingatlah bahwa:

adj space open parentheses R close parentheses equals open parentheses kof space open parentheses R close parentheses close parentheses to the power of T

Diperoleh:

begin mathsize 12px style table attributes columnalign right center left columnspacing 0px end attributes row cell kof space open parentheses R close parentheses end cell equals cell open parentheses open parentheses negative 1 close parentheses to the power of i plus j end exponent times M subscript i j end subscript close parentheses end cell row blank equals cell open parentheses table row cell M subscript 11 end cell cell M subscript 12 end cell cell M subscript 13 end cell row cell M subscript 21 end cell cell M subscript 22 end cell cell M subscript 23 end cell row cell M subscript 31 end cell cell M subscript 32 end cell cell M subscript 33 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell open vertical bar table row cell negative 2 end cell 2 row 1 cell negative 8 end cell end table close vertical bar end cell cell negative open vertical bar table row 2 2 row 13 cell negative 8 end cell end table close vertical bar end cell cell open vertical bar table row 2 cell negative 2 end cell row 13 1 end table close vertical bar end cell row cell negative open vertical bar table row 4 cell negative 7 end cell row 1 cell negative 8 end cell end table close vertical bar end cell cell open vertical bar table row 9 cell negative 7 end cell row 13 cell negative 8 end cell end table close vertical bar end cell cell negative open vertical bar table row 9 4 row 13 1 end table close vertical bar end cell row cell open vertical bar table row 4 cell negative 7 end cell row cell negative 2 end cell 2 end table close vertical bar end cell cell negative open vertical bar table row 9 cell negative 7 end cell row 2 2 end table close vertical bar end cell cell open vertical bar table row 9 4 row 2 cell negative 2 end cell end table close vertical bar end cell end table close parentheses end cell row blank equals cell open parentheses table row cell open parentheses negative 2 close parentheses times open parentheses negative 8 close parentheses minus 2 times 1 end cell cell negative open parentheses 2 times open parentheses negative 8 close parentheses minus 2 times 13 close parentheses end cell cell 2 times 1 minus open parentheses negative 2 close parentheses times 13 end cell row cell negative open parentheses 4 times open parentheses negative 8 close parentheses minus open parentheses negative 7 close parentheses times 1 close parentheses end cell cell 9 times open parentheses negative 8 close parentheses minus open parentheses negative 7 close parentheses times 13 end cell cell negative open parentheses 9 times 1 minus 4 times 13 close parentheses end cell row cell 4 times 2 minus open parentheses negative 7 close parentheses times open parentheses negative 2 close parentheses end cell cell negative open parentheses 9 times 2 minus open parentheses negative 7 close parentheses times 2 close parentheses end cell cell 9 times open parentheses negative 2 close parentheses minus 4 times 2 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 16 minus 2 end cell cell negative open parentheses negative 16 minus 26 close parentheses end cell cell 2 minus open parentheses negative 26 close parentheses end cell row cell negative open parentheses negative 32 minus open parentheses negative 7 close parentheses close parentheses end cell cell negative 72 minus open parentheses negative 91 close parentheses end cell cell negative open parentheses 9 minus 52 close parentheses end cell row cell 8 minus 14 end cell cell negative open parentheses 18 minus open parentheses negative 14 close parentheses close parentheses end cell cell negative 18 minus 8 end cell end table close parentheses end cell row blank equals cell open parentheses table row 14 cell negative open parentheses negative 42 close parentheses end cell cell 2 plus 26 end cell row cell negative open parentheses negative 32 plus 7 close parentheses end cell cell negative 72 plus 91 end cell cell negative open parentheses negative 43 close parentheses end cell row cell negative 6 end cell cell negative open parentheses 18 plus 14 close parentheses end cell cell negative 26 end cell end table close parentheses end cell row blank equals cell open parentheses table row 14 42 28 row 25 19 43 row cell negative 6 end cell cell negative 32 end cell cell negative 26 end cell end table close parentheses end cell end table end style

Akibatnya,

table attributes columnalign right center left columnspacing 0px end attributes row cell adj space open parentheses R close parentheses end cell equals cell open parentheses kof space open parentheses R close parentheses close parentheses to the power of T end cell row blank equals cell open parentheses table row 14 42 28 row 25 19 43 row cell negative 6 end cell cell negative 32 end cell cell negative 26 end cell end table close parentheses to the power of T end cell row blank equals cell open parentheses table row 14 25 cell negative 6 end cell row 42 19 cell negative 32 end cell row 28 43 cell negative 26 end cell end table close parentheses end cell end table

Jadi, 

table attributes columnalign right center left columnspacing 0px end attributes row cell R to the power of negative 1 end exponent end cell equals cell fraction numerator 1 over denominator det space R end fraction times adj space open parentheses R close parentheses end cell row blank equals cell 1 over 98 times open parentheses table row 14 25 cell negative 6 end cell row 42 19 cell negative 32 end cell row 28 43 cell negative 26 end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 14 over 98 end cell cell 25 over 98 end cell cell fraction numerator negative 6 over denominator 98 end fraction end cell row cell 42 over 98 end cell cell 19 over 98 end cell cell fraction numerator negative 32 over denominator 98 end fraction end cell row cell 28 over 98 end cell cell 43 over 98 end cell cell fraction numerator negative 26 over denominator 98 end fraction end cell end table close parentheses end cell row blank equals cell open parentheses table row cell 1 over 7 end cell cell 25 over 98 end cell cell negative 3 over 49 end cell row cell 3 over 7 end cell cell 19 over 98 end cell cell negative 16 over 49 end cell row cell 2 over 7 end cell cell 43 over 98 end cell cell negative 13 over 49 end cell end table close parentheses end cell end table

Maka, invers matriks R adalah table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses table row cell 1 over 7 end cell cell 25 over 98 end cell cell negative 3 over 49 end cell row cell 3 over 7 end cell cell 19 over 98 end cell cell negative 16 over 49 end cell row cell 2 over 7 end cell cell 43 over 98 end cell cell negative 13 over 49 end cell end table close parentheses end cell end table.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Invers dari matriks adalah ....

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia