Iklan

Iklan

Pertanyaan

Diketahui fungsi f ( x ) = x + 3 2 x − 5 ​ , x  = − 3 dan g ( x ) = x 2 ​ . Fungsi ( f ∘ g ) − 1 ( x ) adalah ...

Diketahui fungsi  dan . Fungsi  adalah ...  

  1. begin mathsize 14px style fraction numerator 2 minus 4 x over denominator 3 x plus 5 end fraction comma space x not equal to negative 5 over 3 end style    

  2. fraction numerator size 14px 2 size 14px x size 14px plus size 14px 4 over denominator size 14px 3 size 14px x size 14px plus size 14px 5 end fraction size 14px comma size 14px space size 14px x size 14px not equal to size 14px minus size 14px 5 over size 14px 3  

  3. fraction numerator size 14px 4 size 14px minus size 14px 2 size 14px x over denominator size 14px 3 size 14px x size 14px minus size 14px 5 end fraction size 14px comma size 14px space size 14px x size 14px not equal to size 14px 5 over size 14px 3  

  4. fraction numerator size 14px 4 size 14px minus size 14px 2 size 14px x over denominator size 14px 3 size 14px x size 14px plus size 14px 5 end fraction size 14px comma size 14px space size 14px x size 14px not equal to size 14px minus size 14px 5 over size 14px 3  

  5. fraction numerator size 14px 3 size 14px x size 14px plus size 14px 5 over denominator size 14px 2 size 14px x size 14px minus size 14px 4 end fraction size 14px comma size 14px space size 14px x size 14px not equal to size 14px 2  

Iklan

I. Roy

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah D

jawaban yang tepat adalah D

Iklan

Pembahasan

Pertama kita tentukan invers dari fungsi selanjutnya akan dicari invers dari fungsi Dengan menggunakan sifat invers fungsi akan dtentukan Jadi,jawaban yang tepat adalah D

Pertama kita tentukan invers dari fungsi  begin mathsize 14px style f open parentheses x close parentheses equals fraction numerator 2 x minus 5 over denominator x plus 3 end fraction comma x not equal to negative 3 end style

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell fraction numerator 2 x minus 5 over denominator x plus 3 end fraction end cell row cell 2 x minus 5 end cell equals cell y x plus 3 y end cell row cell 2 x minus y x end cell equals cell 3 y plus 5 end cell row cell x open parentheses 2 minus y close parentheses end cell equals cell 3 y plus 5 end cell row x equals cell fraction numerator 3 y plus 5 over denominator 2 minus y end fraction end cell row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell fraction numerator 3 x plus 5 over denominator 2 minus x end fraction end cell end table end style 

selanjutnya akan dicari invers dari fungsi begin mathsize 14px style g open parentheses x close parentheses equals 2 over x end style

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row y equals cell 2 over x end cell row cell y x end cell equals 2 row x equals cell 2 over y end cell row cell g to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell 2 over x end cell end table end style 

Dengan menggunakan sifat invers fungsi akan dtentukan begin mathsize 14px style open parentheses f ring operator g close parentheses to the power of negative 1 end exponent open parentheses x close parentheses end style

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell left parenthesis f ring operator g right parenthesis to the power of negative 1 end exponent left parenthesis x right parenthesis end cell equals cell open parentheses g to the power of negative 1 end exponent ring operator f to the power of negative 1 end exponent close parentheses open parentheses x close parentheses end cell row cell space space space space space space space space space space space space space space space end cell equals cell g to the power of negative 1 end exponent open parentheses f to the power of negative 1 end exponent open parentheses x close parentheses close parentheses end cell row cell space space space space space space space space space space space space space space space end cell equals cell g to the power of negative 1 end exponent open parentheses fraction numerator 3 x plus 5 over denominator 2 minus x end fraction close parentheses end cell row cell space space space space space space space space space space space space space space space end cell equals cell fraction numerator 2 over denominator begin display style fraction numerator 3 x plus 5 over denominator 2 minus x end fraction end style end fraction end cell row cell space space space space space space space space space space space space space space space end cell equals cell 2 times fraction numerator 2 minus x over denominator 3 x plus 5 end fraction end cell row cell space space space space space space space space space space space space space space space end cell equals cell fraction numerator 4 minus 2 x over denominator 3 x plus 5 end fraction comma space x not equal to negative 5 over 3 end cell end table end style 

Jadi,jawaban yang tepat adalah D

Fungsi Komposisi

Fungsi Invers

Invers Fungsi Komposisi

Latihan Soal Fungsi Komposisi dan Invers

Latihan Bab

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

237

Adelia Putri

bagus padat jelas lop you rajin2 ke gini Makasih ❤️

Iklan

Iklan

Pertanyaan serupa

2. Fungsi f : R → R dan g : R → R didefinisikan oleh f ( x ) = 2 x + 11 dan g ( x ) = 1 − x . Tentukan: e. ( f ∘ g − 1 ) ( x )

32

0.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia