Iklan

Iklan

Pertanyaan

Diketahui f(x) = 2x + 3 dengan dan g(x) = 3x - 2 dengan . Maka, ...

Diketahui f(x) = 2x + 3 dengan begin mathsize 14px style D subscript f equals open curly brackets x vertical line x element of straight real numbers close curly brackets end style dan g(x) = 3x - 2 dengan begin mathsize 14px style D subscript g equals open curly brackets x vertical line x element of straight real numbers close curly brackets end style. Maka,begin mathsize 14px style open parentheses f ring operator g close parentheses to the power of negative 1 end exponent open parentheses x close parentheses equals end style...

  1. begin mathsize 14px style fraction numerator x plus 1 over denominator 6 end fraction end style

  2. begin mathsize 14px style fraction numerator x plus 2 over denominator 3 end fraction end style

  3. begin mathsize 14px style fraction numerator x minus 1 over denominator 6 end fraction end style

  4. begin mathsize 14px style fraction numerator x minus 3 over denominator 2 end fraction end style

  5. begin mathsize 14px style fraction numerator x minus 7 over denominator 6 end fraction end style

     

Iklan

A. Rizky

Master Teacher

Mahasiswa/Alumni Universitas Negeri Malang

Jawaban terverifikasi

Iklan

Pembahasan

Dapat diperiksa bahwa (f ∘ g) (x) terdefinisi dan inversnya ada, serta masing-masing f dan g memiliki invers. Pertama, dengan menerapkan sifat invers pada fungsi komposisi, maka Selanjutnya, kita cari masing-masing dan . Dengan f(x) = y, maka (y) = x sehingga Dengan g(x) = y, maka (y) = x sehingga Jadi,

Dapat diperiksa bahwa (f ∘ g) (x) terdefinisi dan inversnya ada, serta masing-masing f dan g memiliki invers.

 

Pertama, dengan menerapkan sifat invers pada fungsi komposisi, maka

begin mathsize 14px style open parentheses f ring operator g close parentheses to the power of negative 1 end exponent open parentheses x close parentheses equals open parentheses g to the power of negative 1 end exponent ring operator f to the power of negative 1 end exponent close parentheses open parentheses x close parentheses end style

Selanjutnya, kita cari masing-masing begin mathsize 14px style f to the power of negative 1 end exponent end style dan begin mathsize 14px style g to the power of negative 1 end exponent end style.

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses x close parentheses end cell equals cell 2 x plus 3 end cell row y equals cell 2 x plus 3 end cell row cell y minus 3 end cell equals cell 2 x end cell row cell fraction numerator y minus 3 over denominator 2 end fraction end cell equals x end table end style

Dengan f(x) = y, maka begin mathsize 14px style f to the power of negative 1 end exponent end style(y) = x sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell f to the power of negative 1 end exponent open parentheses y close parentheses end cell equals x row cell f to the power of negative 1 end exponent open parentheses y close parentheses end cell equals cell fraction numerator y minus 3 over denominator 2 end fraction end cell row cell f to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell fraction numerator x minus 3 over denominator 2 end fraction end cell row blank blank blank row cell g open parentheses x close parentheses end cell equals cell 3 x minus 2 end cell row y equals cell 3 x minus 2 end cell row cell y plus 2 end cell equals cell 3 x end cell row cell fraction numerator y plus 2 over denominator 3 end fraction end cell equals x end table end style

Dengan g(x) = y, maka begin mathsize 14px style g to the power of negative 1 end exponent end style(y) = x sehingga

begin mathsize 14px style g to the power of negative 1 end exponent open parentheses y close parentheses equals x g to the power of negative 1 end exponent open parentheses y close parentheses equals fraction numerator y plus 2 over denominator 3 end fraction g to the power of negative 1 end exponent open parentheses x close parentheses equals fraction numerator x plus 2 over denominator 3 end fraction end style

Jadi,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses f ring operator g close parentheses to the power of negative 1 end exponent open parentheses x close parentheses end cell equals cell open parentheses g to the power of negative 1 end exponent ring operator f to the power of negative 1 end exponent close parentheses open parentheses x close parentheses end cell row blank equals cell g to the power of negative 1 end exponent open parentheses f to the power of negative 1 end exponent open parentheses x close parentheses close parentheses end cell row blank equals cell g to the power of negative 1 end exponent open parentheses fraction numerator x minus 3 over denominator 2 end fraction close parentheses end cell row blank equals cell fraction numerator open parentheses fraction numerator x minus 3 over denominator 2 end fraction close parentheses plus 2 over denominator 3 end fraction end cell row blank equals cell fraction numerator fraction numerator x minus 3 over denominator 2 end fraction plus 2 over denominator 3 end fraction end cell row blank equals cell fraction numerator fraction numerator x minus 3 over denominator 2 end fraction plus 4 over 2 over denominator 3 end fraction end cell row blank equals cell fraction numerator fraction numerator x plus 1 over denominator 2 end fraction over denominator 3 end fraction end cell row blank equals cell fraction numerator x plus 1 over denominator 2 times 3 end fraction end cell row blank equals cell fraction numerator x plus 1 over denominator 6 end fraction end cell end table end style 

Pengertian Invers Fungsi

Menentukan Invers Fungsi

Invers Fungsi Komposisi

Latihan Bab

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

209

Iklan

Iklan

Pertanyaan serupa

Jika f ( x ) = 3 − x dengan dan g ( x ) = x + 2 dengan , maka ( g ∘ f ) − 1 ( x ) adalah....

39

0.0

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia