Iklan

Pertanyaan

∫ e x sin 2 x dx = ....

  

  1. begin mathsize 14px style 1 fifth straight e to the power of straight x left parenthesis 2 cos space 2 straight x minus sin space 2 straight x right parenthesis plus straight C end style

  2. begin mathsize 14px style negative 5 straight e to the power of straight x left parenthesis 2 cos space 2 straight x minus sin space 2 straight x right parenthesis plus straight C end style   

  3. begin mathsize 14px style negative 1 fifth straight e to the power of straight x left parenthesis 2 cos space 2 straight x minus sin space 2 straight x right parenthesis plus straight C end style   

  4. begin mathsize 14px style 1 fifth straight e to the power of straight x left parenthesis 2 cos space 2 straight x plus sin space 2 straight x right parenthesis plus straight C end style   

  5. begin mathsize 14px style negative 1 fifth straight e to the power of straight x left parenthesis 2 cos space 2 straight x plus sin space 2 straight x right parenthesis plus straight C end style

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

15

:

48

:

34

Klaim

Iklan

R. RGFLLIMA

Master Teacher

Jawaban terverifikasi

Jawaban

jawabannya adalah C.

jawabannya adalah C.

Pembahasan

Kita cari hasil integral di atas dengan menggunakan integral parsial. Misalkan dan , maka dan sehingga Selanjutnya, kita gunakan metode parsial untuk mencari hasil integral Misalkan dan , maka dan Sehingga Jadi, jawabannya adalah C.

Kita cari hasil integral di atas dengan menggunakan integral parsial.
Misalkan begin mathsize 14px style straight u equals straight e to the power of straight x end style dan begin mathsize 14px style dv over dx equals sin space 2 straight x end style, maka

begin mathsize 14px style du over dx equals straight e to the power of straight x semicolon end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx end cell row blank equals cell integral sin space 2 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell negative 1 half space cos space 2 straight x plus straight C end cell end table end style

sehingga

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral straight e to the power of straight x sin space 2 straight x space dx end cell equals cell straight e to the power of straight x times open parentheses negative 1 half cos space 2 straight x close parentheses minus integral open parentheses negative 1 half cos space 2 straight x close parentheses times straight e to the power of straight x space dx end cell row blank equals cell negative 1 half space straight e to the power of straight x space cos space 2 straight x plus 1 half integral straight e to the power of straight x space cos space 2 straight x space dx end cell end table end style

Selanjutnya, kita gunakan metode parsial untuk mencari hasil integral begin mathsize 14px style integral straight e to the power of straight x space cos space 2 straight x space dx end style
Misalkan begin mathsize 14px style straight u equals straight e to the power of straight x end style dan begin mathsize 14px style dv over dx equals cos space 2 straight x end style, maka

begin mathsize 14px style du over dx equals straight e to the power of straight x semicolon end style

dan

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row straight v equals cell integral dv over dx dx end cell row blank equals cell integral cos space 2 straight x space dx semicolon space gunakan space metode space substitusi end cell row blank equals cell 1 half sin space 2 straight x plus straight C end cell end table end style

Sehingga

 

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 half straight e to the power of straight x space cos space 2 straight x plus 1 half integral straight e to the power of straight x space cos space 2 straight x space dx end cell row cell integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 half straight e to the power of straight x space cos space 2 straight x plus 1 half open parentheses straight e to the power of straight x times 1 half sin space 2 straight x minus integral 1 half space sin space 2 straight x times straight e to the power of straight x space dx close parentheses plus straight C end cell row cell integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 half straight e to the power of straight x space cos space 2 straight x plus 1 fourth straight e to the power of straight x space sin space 2 straight x minus 1 fourth integral straight e to the power of straight x space sin space 2 straight x space dx plus straight C end cell row cell integral straight e to the power of straight x space sin space 2 straight x space dx plus 1 fourth integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 half straight e to the power of straight x space cos space 2 straight x plus 1 fourth straight e to the power of straight x space end exponent sin space 2 straight x plus straight C end cell row cell 5 over 4 integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 fourth straight e to the power of straight x open parentheses 2 cos space 2 straight x minus sin space 2 straight x close parentheses plus straight C end cell row cell integral straight e to the power of straight x space sin space 2 straight x space dx end cell equals cell negative 1 fifth straight e to the power of straight x left parenthesis 2 cos space 2 straight x minus sin space 2 straight x right parenthesis plus straight C end cell end table end style

Jadi, jawabannya adalah C.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

Hasil dari ∫ e x cos 2 x ​ d x adalah ....

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia