∫x+1x​dx= ...

Pertanyaan

begin mathsize 14px style integral fraction numerator x over denominator x plus 1 end fraction d x equals space... end style 

  1. ...begin mathsize 14px style space end style 

  2. ...begin mathsize 14px style space end style 

S. Yoga

Master Teacher

Mahasiswa/Alumni Universitas Pendidikan Indonesia

Jawaban terverifikasi

Jawaban

hasilnya adalah begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank integral end table fraction numerator x over denominator x plus 1 end fraction d x table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 1 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank minus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank ln end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell vertical line x plus 1 vertical line end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank C end table end style.

Pembahasan

Untuk menyelesaikan integral tersebut, dapat menggunakan metode substitusi.

Misalkan,

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row u equals cell x plus 1 end cell row cell fraction numerator d u over denominator d x end fraction end cell equals 1 row cell d x end cell equals cell d u end cell row blank blank blank row u equals cell x plus 1 rightwards arrow x equals u minus 1 end cell end table end style

Kemudian substitusikan, sehingga didapat:

begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell integral fraction numerator x over denominator x plus 1 end fraction d x end cell equals cell integral fraction numerator u minus 1 over denominator u end fraction d u end cell row blank equals cell integral 1 minus 1 over u d u end cell row blank equals cell u minus ln open vertical bar u close vertical bar plus C end cell end table end style  

Substitusikan kembali begin mathsize 14px style u equals x plus 1 end style.

Jadi, hasilnya adalah begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row blank blank integral end table fraction numerator x over denominator x plus 1 end fraction d x table attributes columnalign right center left columnspacing 0px end attributes row blank equals blank end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank x end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank 1 end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank minus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank ln end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell vertical line x plus 1 vertical line end cell end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank plus end table table attributes columnalign right center left columnspacing 0px end attributes row blank blank C end table end style.

66

5.0 (3 rating)

Pertanyaan serupa

Hasil dari ∫x​(x​+2)3​dx=....

47

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Produk Lainnya

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2022 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia