Ingat kembali rumuspenjumlahan dua sudut:
cos ( α + b ) = cos α ⋅ cos β − sin α ⋅ sin β
tan ( α + b ) = 1 − tan α ⋅ tan β tan α + tan β
cos 2 α = cos 2 α − sin 2 α = 2 ⋅ cos 2 α − 1
sin 2 α = 2 ⋅ sin α ⋅ cos α
tan 2 α = 1 − tan 2 α 2 ⋅ tan α
dan identitas trigonometri sin 2 α + cos 2 α = 1 .
Oleh karena itu, dapatdiperoleh rumus berikut:
untuk cos 3 A
cos 3 A cos 3 α = = = = = = = = = cos ( 2 A + A ) cos 2 A ⋅ cos A − sin 2 A ⋅ sin A ( 2 ⋅ cos 2 A − 1 ) ⋅ co s A − ( 2 ⋅ sin A ⋅ cos A ) ⋅ sin A 2 ⋅ cos 3 A − co s A − 2 ⋅ sin 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ ( 1 − cos 2 A ) ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ 1 ⋅ cos A + 2 ⋅ cos 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A + 2 ⋅ cos 3 A 2 ⋅ cos 3 A + 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A 4 ⋅ cos 3 A − 3 ⋅ cos A
untuk cos 4 A :
cos 4 A cos 4 A = = = = = = = = cos ( 2 A + 2 A ) cos 2 A ⋅ cos 2 A − sin 2 A ⋅ sin 2 A cos 2 2 A − sin 2 2 A ( cos 2 A ) 2 − ( sin 2 A ) 2 ( cos 2 A − sin 2 A ) 2 − ( 2 ⋅ cos A ⋅ sin A ) 2 ( cos 2 A ) 2 + ( sin 2 A ) 2 − 2 ⋅ cos 2 A ⋅ sin 2 A − 2 2 ⋅ ( sin A ) 2 ⋅ ( cos A ) 2 cos 4 A + sin 4 A − 2 ⋅ sin 2 A ⋅ cos 2 A − 4 ⋅ sin 2 A ⋅ cos 2 A cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A
untuk tan 3 A :
tan 3 A tan 3 A = = = = = = = = = = = = = tan ( A + 2 A ) 1 − t a n A ⋅ t a n 2 A t a n A + t a n 2 A 1 − t a n A ⋅ 1 − tan 2 A 2 ⋅ tan A t a n A + 1 − tan 2 A 2 ⋅ tan A 1 1 − 1 − tan 2 A tan A ⋅ 2 ⋅ tan A 1 tan A + 1 − tan 2 A 2 ⋅ tan A 1 ⋅ ( 1 − tan 2 A ) 1 ⋅ ( 1 − tan 2 A ) − 1 − tan 2 A 2 ⋅ tan 2 A 1 ⋅ ( 1 − tan 2 A ) tan A ⋅ ( 1 − tan 2 A ) + 1 − tan 2 A 2 ⋅ tan A 1 ⋅ 1 − 1 ⋅ tan 2 A 1 ⋅ 1 − 1 ⋅ tan 2 A − 1 − tan 2 A 2 ⋅ tan 2 A 1 ⋅ 1 − 1 ⋅ tan 2 A tan A ⋅ 1 − tan A ⋅ tan 2 A + 1 − tan 2 A 2 ⋅ tan A 1 − tan 2 A 1 − tan 2 A − 1 − tan 2 A 2 ⋅ tan 2 A 1 − tan 2 A tan A − tan 3 A + 1 − tan 2 A 2 ⋅ tan A 1 − tan 2 A 1 − tan 2 A − 2 ⋅ tan 2 A 1 − tan 2 A tan A − tan 3 A + 2 ⋅ tan A 1 − tan 2 A 1 − 3 ⋅ tan 2 A 1 − tan 2 A 3 ⋅ tan A − tan 3 A 1 − t a n 2 A 3 ⋅ t a n A − t a n 3 A × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A 1 − t a n 2 A 1 3 ⋅ t a n A − t a n 3 A × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A 1 1 × ( 1 − 3 ⋅ t a n 2 A ) ( 3 ⋅ t a n A − t a n 3 A ) × 1 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A
untuk tan 4 A :
tan 4 A tan 4 A = = = = = = = = = = = = = tan ( 2 A + 2 A ) 1 − t a n 2 A ⋅ t a n 2 A t a n 2 A + t a n 2 A 1 − 1 − tan 2 A 2 ⋅ tan A ⋅ 1 − tan 2 A 2 ⋅ tan A 1 − tan 2 A 2 ⋅ tan A + 1 − tan 2 A 2 ⋅ tan A 1 1 − ( 1 − tan 2 A ) 2 ( 2 ⋅ tan A ) 2 1 − tan 2 A 2 ⋅ tan A + 2 ⋅ tan A 1 × ( 1 − tan 2 A ) 2 1 × ( 1 − tan 2 A ) 2 − ( 1 − tan 2 A ) 2 2 2 ⋅ tan 2 A 1 − tan 2 A 4 ⋅ tan A ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 − ( 1 − tan 2 A ) 2 4 ⋅ tan 2 A 1 − tan 2 A 4 ⋅ tan A ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 − 4 ⋅ tan 2 A 1 − tan 2 A 4 ⋅ tan A 1 − t a n 2 A 1 4 ⋅ t a n A × ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ( 1 − t a n 2 A ) 2 ( 1 − t a n 2 A ) 1 × ( ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ) 4 ⋅ t a n A × ( 1 − t a n 2 A ) ( 1 − t a n 2 A ) 2 − 2 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n A ⋅ t a n 2 A 1 2 + ( t a n 2 A ) 2 − 2 ⋅ 1 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n 3 A 1 + t a n 4 A − 2 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A )
Dengan demikian, diperoleh rumus:
cos 3 α = 4 ⋅ cos 3 A − 3 ⋅ cos A
cos 4 A = cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A
tan 3 A = 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A
tan 4 A = 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A )