Iklan

Pertanyaan

1. Tentukan rumus cos 3 A , cos 4 A , tan 3 A ,dan tan 4 A .

1. Tentukan rumus , dan .space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

16

:

37

:

21

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

diperoleh rumus:

diperoleh rumus:

Pembahasan

Ingat kembali rumuspenjumlahan dua sudut: cos ( α + b ) = cos α ⋅ cos β − sin α ⋅ sin β tan ( α + b ) = 1 − tan α ⋅ tan β tan α + tan β ​ cos 2 α = cos 2 α − sin 2 α = 2 ⋅ cos 2 α − 1 sin 2 α = 2 ⋅ sin α ⋅ cos α tan 2 α = 1 − tan 2 α 2 ⋅ tan α ​ dan identitas trigonometri sin 2 α + cos 2 α = 1 . Oleh karena itu, dapatdiperoleh rumus berikut: untuk cos 3 A cos 3 A cos 3 α ​ = = = = = = = = = ​ cos ( 2 A + A ) cos 2 A ⋅ cos A − sin 2 A ⋅ sin A ( 2 ⋅ cos 2 A − 1 ) ⋅ co s A − ( 2 ⋅ sin A ⋅ cos A ) ⋅ sin A 2 ⋅ cos 3 A − co s A − 2 ⋅ sin 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ ( 1 − cos 2 A ) ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ 1 ⋅ cos A + 2 ⋅ cos 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A + 2 ⋅ cos 3 A 2 ⋅ cos 3 A + 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A 4 ⋅ cos 3 A − 3 ⋅ cos A ​ untuk cos 4 A : cos 4 A cos 4 A ​ = = = = = = = = ​ cos ( 2 A + 2 A ) cos 2 A ⋅ cos 2 A − sin 2 A ⋅ sin 2 A cos 2 2 A − sin 2 2 A ( cos 2 A ) 2 − ( sin 2 A ) 2 ( cos 2 A − sin 2 A ) 2 − ( 2 ⋅ cos A ⋅ sin A ) 2 ( cos 2 A ) 2 + ( sin 2 A ) 2 − 2 ⋅ cos 2 A ⋅ sin 2 A − 2 2 ⋅ ( sin A ) 2 ⋅ ( cos A ) 2 cos 4 A + sin 4 A − 2 ⋅ sin 2 A ⋅ cos 2 A − 4 ⋅ sin 2 A ⋅ cos 2 A cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A ​ untuk tan 3 A : tan 3 A tan 3 A ​ = = = = = = = = = = = = = ​ tan ( A + 2 A ) 1 − t a n A ⋅ t a n 2 A t a n A + t a n 2 A ​ 1 − t a n A ⋅ 1 − tan 2 A 2 ⋅ tan A ​ t a n A + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 1 ​ − 1 − tan 2 A tan A ⋅ 2 ⋅ tan A ​ 1 tan A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 ⋅ ( 1 − tan 2 A ) 1 ⋅ ( 1 − tan 2 A ) ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 ⋅ ( 1 − tan 2 A ) tan A ⋅ ( 1 − tan 2 A ) ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 ⋅ 1 − 1 ⋅ tan 2 A 1 ⋅ 1 − 1 ⋅ tan 2 A ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 ⋅ 1 − 1 ⋅ tan 2 A tan A ⋅ 1 − tan A ⋅ tan 2 A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − tan 2 A ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 − tan 2 A tan A − tan 3 A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − tan 2 A − 2 ⋅ tan 2 A ​ 1 − tan 2 A tan A − tan 3 A + 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − 3 ⋅ tan 2 A ​ 1 − tan 2 A 3 ⋅ tan A − tan 3 A ​ ​ 1 − t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A ​ 1 − t a n 2 A ​ 1 3 ⋅ t a n A − t a n 3 A ​ × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A ​ 1 ​ 1 × ( 1 − 3 ⋅ t a n 2 A ) ( 3 ⋅ t a n A − t a n 3 A ) × 1 ​ 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ ​ untuk tan 4 A : tan 4 A tan 4 A ​ = = = = = = = = = = = = = ​ tan ( 2 A + 2 A ) 1 − t a n 2 A ⋅ t a n 2 A t a n 2 A + t a n 2 A ​ 1 − 1 − tan 2 A 2 ⋅ tan A ​ ⋅ 1 − tan 2 A 2 ⋅ tan A ​ 1 − tan 2 A 2 ⋅ tan A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 1 ​ − ( 1 − tan 2 A ) 2 ( 2 ⋅ tan A ) 2 ​ 1 − tan 2 A 2 ⋅ tan A + 2 ⋅ tan A ​ ​ 1 × ( 1 − tan 2 A ) 2 1 × ( 1 − tan 2 A ) 2 ​ − ( 1 − tan 2 A ) 2 2 2 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 ​ − ( 1 − tan 2 A ) 2 4 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 − 4 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ 1 − t a n 2 A ​ 1 4 ⋅ t a n A ​ × ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ( 1 − t a n 2 A ) 2 ​ ( 1 − t a n 2 A ) ​ 1 × ( ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ) 4 ⋅ t a n A × ( 1 − t a n 2 A ) ​ ( 1 − t a n 2 A ) 2 − 2 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n A ⋅ t a n 2 A ​ 1 2 + ( t a n 2 A ) 2 − 2 ⋅ 1 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n 3 A ​ 1 + t a n 4 A − 2 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ ​ Dengan demikian, diperoleh rumus: cos 3 α ​ = ​ 4 ⋅ cos 3 A − 3 ⋅ cos A ​ cos 4 A ​ = ​ cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A ​ tan 3 A ​ = ​ 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ ​ tan 4 A ​ = ​ 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ ​

Ingat kembali rumus penjumlahan dua sudut:

dan identitas trigonometri .

Oleh karena itu, dapat diperoleh rumus berikut:

  • untuk 

 

  • untuk :

  • untuk :

  • untuk :

Dengan demikian, diperoleh rumus:

Buka akses jawaban yang telah terverifikasi

lock

Yah, akses pembahasan gratismu habis


atau

Dapatkan jawaban pertanyaanmu di AiRIS. Langsung dijawab oleh bestie pintar

Tanya Sekarang

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

12

kgs m Daffa khairaan

Jawaban tidak sesuai Pembahasan tidak lengkap Makasih ❤️

Lutvia Keisya Falah Arifin

Pembahasan lengkap banget

Iklan

Tanya ke AiRIS

Yuk, cobain chat dan belajar bareng AiRIS, teman pintarmu!