Iklan

Pertanyaan

1. Tentukan rumus cos 3 A , cos 4 A , tan 3 A ,dan tan 4 A .

1. Tentukan rumus , dan .space 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

14

:

10

:

36

Klaim

Iklan

I. Ridha

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

diperoleh rumus:

diperoleh rumus:

Pembahasan

Ingat kembali rumuspenjumlahan dua sudut: cos ( α + b ) = cos α ⋅ cos β − sin α ⋅ sin β tan ( α + b ) = 1 − tan α ⋅ tan β tan α + tan β ​ cos 2 α = cos 2 α − sin 2 α = 2 ⋅ cos 2 α − 1 sin 2 α = 2 ⋅ sin α ⋅ cos α tan 2 α = 1 − tan 2 α 2 ⋅ tan α ​ dan identitas trigonometri sin 2 α + cos 2 α = 1 . Oleh karena itu, dapatdiperoleh rumus berikut: untuk cos 3 A cos 3 A cos 3 α ​ = = = = = = = = = ​ cos ( 2 A + A ) cos 2 A ⋅ cos A − sin 2 A ⋅ sin A ( 2 ⋅ cos 2 A − 1 ) ⋅ co s A − ( 2 ⋅ sin A ⋅ cos A ) ⋅ sin A 2 ⋅ cos 3 A − co s A − 2 ⋅ sin 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ ( 1 − cos 2 A ) ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ 1 ⋅ cos A + 2 ⋅ cos 2 A ⋅ cos A 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A + 2 ⋅ cos 3 A 2 ⋅ cos 3 A + 2 ⋅ cos 3 A − co s A − 2 ⋅ cos A 4 ⋅ cos 3 A − 3 ⋅ cos A ​ untuk cos 4 A : cos 4 A cos 4 A ​ = = = = = = = = ​ cos ( 2 A + 2 A ) cos 2 A ⋅ cos 2 A − sin 2 A ⋅ sin 2 A cos 2 2 A − sin 2 2 A ( cos 2 A ) 2 − ( sin 2 A ) 2 ( cos 2 A − sin 2 A ) 2 − ( 2 ⋅ cos A ⋅ sin A ) 2 ( cos 2 A ) 2 + ( sin 2 A ) 2 − 2 ⋅ cos 2 A ⋅ sin 2 A − 2 2 ⋅ ( sin A ) 2 ⋅ ( cos A ) 2 cos 4 A + sin 4 A − 2 ⋅ sin 2 A ⋅ cos 2 A − 4 ⋅ sin 2 A ⋅ cos 2 A cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A ​ untuk tan 3 A : tan 3 A tan 3 A ​ = = = = = = = = = = = = = ​ tan ( A + 2 A ) 1 − t a n A ⋅ t a n 2 A t a n A + t a n 2 A ​ 1 − t a n A ⋅ 1 − tan 2 A 2 ⋅ tan A ​ t a n A + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 1 ​ − 1 − tan 2 A tan A ⋅ 2 ⋅ tan A ​ 1 tan A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 ⋅ ( 1 − tan 2 A ) 1 ⋅ ( 1 − tan 2 A ) ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 ⋅ ( 1 − tan 2 A ) tan A ⋅ ( 1 − tan 2 A ) ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 ⋅ 1 − 1 ⋅ tan 2 A 1 ⋅ 1 − 1 ⋅ tan 2 A ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 ⋅ 1 − 1 ⋅ tan 2 A tan A ⋅ 1 − tan A ⋅ tan 2 A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − tan 2 A ​ − 1 − tan 2 A 2 ⋅ tan 2 A ​ 1 − tan 2 A tan A − tan 3 A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − tan 2 A − 2 ⋅ tan 2 A ​ 1 − tan 2 A tan A − tan 3 A + 2 ⋅ tan A ​ ​ 1 − tan 2 A 1 − 3 ⋅ tan 2 A ​ 1 − tan 2 A 3 ⋅ tan A − tan 3 A ​ ​ 1 − t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A ​ 1 − t a n 2 A ​ 1 3 ⋅ t a n A − t a n 3 A ​ × 1 − 3 ⋅ t a n 2 A 1 − t a n 2 A ​ 1 ​ 1 × ( 1 − 3 ⋅ t a n 2 A ) ( 3 ⋅ t a n A − t a n 3 A ) × 1 ​ 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ ​ untuk tan 4 A : tan 4 A tan 4 A ​ = = = = = = = = = = = = = ​ tan ( 2 A + 2 A ) 1 − t a n 2 A ⋅ t a n 2 A t a n 2 A + t a n 2 A ​ 1 − 1 − tan 2 A 2 ⋅ tan A ​ ⋅ 1 − tan 2 A 2 ⋅ tan A ​ 1 − tan 2 A 2 ⋅ tan A ​ + 1 − tan 2 A 2 ⋅ tan A ​ ​ 1 1 ​ − ( 1 − tan 2 A ) 2 ( 2 ⋅ tan A ) 2 ​ 1 − tan 2 A 2 ⋅ tan A + 2 ⋅ tan A ​ ​ 1 × ( 1 − tan 2 A ) 2 1 × ( 1 − tan 2 A ) 2 ​ − ( 1 − tan 2 A ) 2 2 2 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 ​ − ( 1 − tan 2 A ) 2 4 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ ( 1 − tan 2 A ) 2 ( 1 − tan 2 A ) 2 − 4 ⋅ tan 2 A ​ 1 − tan 2 A 4 ⋅ tan A ​ ​ 1 − t a n 2 A ​ 1 4 ⋅ t a n A ​ × ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ( 1 − t a n 2 A ) 2 ​ ( 1 − t a n 2 A ) ​ 1 × ( ( 1 − t a n 2 A ) 2 − 4 ⋅ t a n 2 A ) 4 ⋅ t a n A × ( 1 − t a n 2 A ) ​ ( 1 − t a n 2 A ) 2 − 2 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n A ⋅ t a n 2 A ​ 1 2 + ( t a n 2 A ) 2 − 2 ⋅ 1 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ t a n A − 4 ⋅ t a n 3 A ​ 1 + t a n 4 A − 2 ⋅ t a n 2 A − 4 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ ​ Dengan demikian, diperoleh rumus: cos 3 α ​ = ​ 4 ⋅ cos 3 A − 3 ⋅ cos A ​ cos 4 A ​ = ​ cos 4 A + sin 4 A − 6 ⋅ sin 2 A ⋅ cos 2 A ​ tan 3 A ​ = ​ 1 − 3 ⋅ t a n 2 A 3 ⋅ t a n A − t a n 3 A ​ ​ tan 4 A ​ = ​ 1 + t a n 4 A − 6 ⋅ t a n 2 A 4 ⋅ ( t a n A − t a n 3 A ) ​ ​

Ingat kembali rumus penjumlahan dua sudut:

dan identitas trigonometri .

Oleh karena itu, dapat diperoleh rumus berikut:

  • untuk 

 

  • untuk :

  • untuk :

  • untuk :

Dengan demikian, diperoleh rumus:

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

9

kgs m Daffa khairaan

Jawaban tidak sesuai Pembahasan tidak lengkap Makasih ❤️

Lutvia Keisya Falah Arifin

Pembahasan lengkap banget

Iklan

Pertanyaan serupa

9. Jika A + B + C = 18 0 ∘ , tunjukkan bahwa: c. cos 2 A + cos 2 B − cos 2 C = 1 − 4 sin A ⋅ sin B ⋅ cos C

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia