Iklan

Pertanyaan

Turunan petama dari fungsi g ( t ) = 1 + cos 2 t 1 − sin 2 t ​ adalah ....

Turunan petama dari fungsi  adalah ....

  1. size 14px g size 14px apostrophe begin mathsize 14px style left parenthesis t right parenthesis end style size 14px equals size 14px minus size 14px tan size 14px space size 14px 2 size 14px t 

     

  2. size 14px g size 14px apostrophe begin mathsize 14px style left parenthesis t right parenthesis end style size 14px equals size 14px minus size 14px c size 14px o size 14px t size 14px space size 14px 2 size 14px t 

  3. begin mathsize 14px style g apostrophe open parentheses t close parentheses equals fraction numerator 2 sin invisible function application 2 t minus 2 cos invisible function application 2 t over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end style 

  4. begin mathsize 14px style g apostrophe open parentheses t close parentheses equals fraction numerator 2 cos invisible function application 2 t minus 2 sin invisible function application 2 t minus 2 over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end style 

  5. begin mathsize 14px style g apostrophe open parentheses t close parentheses equals fraction numerator 2 sin invisible function application 2 t minus 2 cos invisible function application 2 t minus 2 over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end style 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

01

:

22

:

00

:

24

Klaim

Iklan

H. Nufus

Master Teacher

Mahasiswa/Alumni Universitas Negeri Surabaya

Jawaban terverifikasi

Jawaban

jawaban yang tepat adalah E.

jawaban yang tepat adalah E.

Pembahasan

Misal dan . Maka dan . Ingat kembali jika , maka . Sehingga,didapat Jadi, jawaban yang tepat adalah E.

Misal begin mathsize 14px style u left parenthesis t right parenthesis equals 1 minus sin invisible function application 2 t space end styledan begin mathsize 14px style v left parenthesis t right parenthesis equals 1 plus cos invisible function application 2 t end style. Maka begin mathsize 14px style u to the power of apostrophe left parenthesis t right parenthesis equals negative 2 c o s invisible function application 2 t end style  dan  begin mathsize 14px style v to the power of apostrophe left parenthesis t right parenthesis equals negative 2 s i n invisible function application 2 t end style.

Ingat kembali jika begin mathsize 14px style g left parenthesis t right parenthesis equals fraction numerator u left parenthesis t right parenthesis over denominator v left parenthesis t right parenthesis space end fraction end style, maka begin mathsize 14px style g to the power of apostrophe left parenthesis t right parenthesis equals fraction numerator u to the power of apostrophe left parenthesis t right parenthesis times v left parenthesis t right parenthesis minus u left parenthesis t right parenthesis times v to the power of apostrophe left parenthesis t right parenthesis over denominator left parenthesis v left parenthesis t right parenthesis right parenthesis squared end fraction end style.

Sehingga, didapat

 begin mathsize 14px style table attributes columnalign right center left columnspacing 0px end attributes row cell g to the power of apostrophe left parenthesis t right parenthesis end cell equals cell fraction numerator u to the power of apostrophe left parenthesis t right parenthesis times v left parenthesis t right parenthesis minus u left parenthesis t right parenthesis times v to the power of apostrophe left parenthesis t right parenthesis over denominator left parenthesis v left parenthesis t right parenthesis right parenthesis squared end fraction end cell row blank equals cell fraction numerator negative 2 cos invisible function application 2 t times left parenthesis 1 plus cos invisible function application 2 t right parenthesis minus left parenthesis 1 minus sin invisible function application 2 t right parenthesis times left parenthesis negative 2 sin invisible function application 2 t right parenthesis over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end cell row blank equals cell fraction numerator negative 2 cos invisible function application 2 t minus 2 cos squared invisible function application 2 t minus left parenthesis negative 2 sin invisible function application 2 t plus 2 sin squared invisible function application 2 t right parenthesis over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end cell row blank equals cell fraction numerator negative 2 cos invisible function application 2 t minus 2 cos squared invisible function application 2 t plus 2 sin invisible function application 2 t minus 2 sin squared invisible function application 2 t over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end cell row blank equals cell fraction numerator 2 sin invisible function application 2 t minus 2 cos invisible function application 2 t minus 2 left parenthesis sin squared invisible function application 2 t plus cos squared invisible function application 2 t right parenthesis over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end cell row blank equals cell fraction numerator 2 sin invisible function application 2 t minus 2 cos invisible function application 2 t minus 2 over denominator left parenthesis 1 plus c o s invisible function application 2 t right parenthesis squared end fraction end cell end table end style

Jadi, jawaban yang tepat adalah E.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

59

Iklan

Pertanyaan serupa

Salah satu titik stasioner dari fungsi f ( x ) = 2 ​ − cos x sin x ​ dengan 0 < x ≤ π adalah ....

1

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia