Iklan

Pertanyaan

Tentukanlah interval di mana grafik fungsi y = 2 4 x + 2 ​ berada di bawah grafik dari fungsi y = 2 3 x − 1 1 ​ ​ .

Tentukanlah interval di mana grafik fungsi  berada di bawah grafik dari fungsi .

8 dari 10 siswa nilainya naik

dengan paket belajar pilihan

Habis dalam

01

:

00

:

10

:

29

Klaim

Iklan

S. Nur

Master Teacher

Jawaban terverifikasi

Jawaban

interval fungsi tersebut adalah .

interval fungsi tersebut adalah x less than negative 1.

Pembahasan

Pembahasan
lock

Diketahui: Grafik fungsi berada di bawah grafik fungsi . Ditanya: Interval grafik tersebut Grafik fungsi berada di bawah grafik fungsi apabila . Karena basis pertidaksamaan di atas lebih dari 1, maka: Jadi, interval fungsi tersebut adalah .

Diketahui:

Grafik fungsi y equals 2 square root of 4 to the power of x plus 2 end exponent end root berada di bawah grafik  fungsi y equals square root of 1 over 2 to the power of 3 x minus 1 end exponent end root.

Ditanya:

Interval grafik tersebut

Grafik fungsi y subscript 1 equals 2 square root of 4 to the power of x plus 2 end exponent end root berada di bawah grafik fungsi y subscript 2 equals square root of 1 over 2 to the power of 3 x minus 1 end exponent end root apabila y subscript 1 less than y subscript 2.

table attributes columnalign right center left columnspacing 0px end attributes row cell y subscript 1 end cell less than cell y subscript 2 end cell row cell 2 square root of 4 to the power of x plus 2 end exponent end root end cell less than cell square root of 1 over 2 to the power of 3 x minus 1 end exponent end root end cell row cell 2 open parentheses 4 to the power of x plus 2 end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell less than cell open parentheses 1 over 2 to the power of 3 x minus 1 end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell row cell 2 open parentheses open parentheses 2 squared close parentheses to the power of x plus 2 end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell less than cell open parentheses 2 to the power of negative open parentheses 3 x minus 1 close parentheses end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell row cell 2 open parentheses 2 to the power of 2 x plus 4 end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell less than cell open parentheses 2 to the power of negative 3 x plus 1 end exponent close parentheses to the power of begin inline style 1 half end style end exponent end cell row cell 2 open parentheses 2 to the power of x plus 2 end exponent close parentheses end cell less than cell open parentheses 2 to the power of begin inline style fraction numerator negative 3 x plus 1 over denominator 2 end fraction end style end exponent close parentheses end cell row cell 2 to the power of 1 open parentheses 2 to the power of x plus 2 end exponent close parentheses end cell less than cell open parentheses 2 to the power of begin inline style fraction numerator negative 3 x plus 1 over denominator 2 end fraction end style end exponent close parentheses end cell row cell open parentheses 2 to the power of x plus 2 plus 1 end exponent close parentheses end cell less than cell open parentheses 2 to the power of begin inline style fraction numerator negative 3 x plus 1 over denominator 2 end fraction end style end exponent close parentheses end cell row cell open parentheses 2 to the power of x plus 3 end exponent close parentheses end cell less than cell open parentheses 2 to the power of begin inline style fraction numerator negative 3 x plus 1 over denominator 2 end fraction end style end exponent close parentheses end cell end table

Karena basis pertidaksamaan di atas lebih dari 1, maka:

table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses 2 to the power of x plus 3 end exponent close parentheses end cell less than cell open parentheses 2 to the power of begin inline style fraction numerator negative 3 x plus 1 over denominator 2 end fraction end style end exponent close parentheses end cell row cell x plus 3 end cell less than cell negative fraction numerator 3 x plus 1 over denominator 2 end fraction end cell row cell 2 x plus 6 end cell less than cell negative 3 x plus 1 end cell row cell 2 x plus 3 x end cell less than cell 1 minus 6 end cell row cell 5 x end cell less than cell negative 5 end cell row x less than cell negative 1 end cell end table

Jadi, interval fungsi tersebut adalah x less than negative 1.

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

10. Diketahui fungsi f ( x ) = 3 x + 2 dan g ( x ) = 9 1 ​ × 3 − x . a. Tentukan titik potong f( x ) dan g( x ). b. Tentukan interval x sedemikian hingga f( x ) berada di atas g( x ).

5

4.5

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia