Iklan

Pertanyaan

Tentukan median dan kuartil dari data yang dinyatakan dengan histogram berikut.

Tentukan median dan kuartil dari data yang dinyatakan dengan histogram berikut.

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

16

:

33

:

59

Klaim

Iklan

M. Mariyam

Master Teacher

Mahasiswa/Alumni Institut Pertanian Bogor

Jawaban terverifikasi

Pembahasan

Ingat kembali rumus kuartil bawah ( Q 1 ​ ) , median ( Q 2 ​ ) , dan kuartil atas ( Q 3 ​ ) pada data berkelompok sebagai berikut: Q 1 ​ = L 1 ​ + c ⎝ ⎛ ​ f 1 ​ 4 1 ​ n − F 1 ​ ​ ⎠ ⎞ ​ Q 2 ​ = L 2 ​ + c ⎝ ⎛ ​ f 2 ​ 2 1 ​ n − F 2 ​ ​ ⎠ ⎞ ​ Q 3 ​ = L 3 ​ + c ⎝ ⎛ ​ f 3 ​ 4 3 ​ n − F 3 ​ ​ ⎠ ⎞ ​ dimana L 1 , 2 , 3 ​ = tepi bawah kelas kuartil bawah, median, kuartil atas n = ukuran data (jumlah frekuensi) f 1 , 2 , 3 ​ = frekuensi pada interval kelas kuartil bawah, median dan kuartil atas F 1 , 2 , 3 ​ = frekuensi kumulatif sebelum kelas kuartil bawah, median dan kuartil atas c = panjang kelas Oleh karena itu, berdasarkan histogram di atas dapat dibuatkan tabel distribusi frekuensi di bawah ini Interval kelas kuartil bawahterletak pada 41 − 45 diperoleh dari 4 1 ​ n = 4 1 ​ × 60 = 15 (lihat dari frekuensi kumulatif), dengan n = 60 , L 1 ​ = 41 − 0 , 5 = 40 , 5 , f 1 ​ = 12 , F 1 ​ = 11 , c = 5 Q 1 ​ ​ = = = = = ​ L 1 ​ + c ⎝ ⎛ ​ f 1 ​ 4 1 ​ n − F 1 ​ ​ ⎠ ⎞ ​ 40 , 5 + 5 ⋅ ⎝ ⎛ ​ 12 4 1 ​ ⋅ 60 − 11 ​ ⎠ ⎞ ​ 40 , 5 + 5 ⋅ ( 12 15 − 11 ​ ) 40 , 5 + 1 , 67 42 , 17 ​ Interval kelas medianterletak pada 46 − 50 diperoleh dari 2 1 ​ n = 2 1 ​ × 60 = 30 (lihat dari frekuensi kumulatif), dengan n = 60 , L 2 ​ = 46 − 0 , 5 = 45 , 5 , f 2 ​ = 16 , F 2 ​ = 23 , c = 5 Q 2 ​ ​ = = = = = ​ L 2 ​ + c ⎝ ⎛ ​ f 2 ​ 2 1 ​ n − F 2 ​ ​ ⎠ ⎞ ​ 45 , 5 + 5 ⋅ ⎝ ⎛ ​ 16 2 1 ​ ⋅ 60 − 23 ​ ⎠ ⎞ ​ 45 , 5 + 5 ⋅ ( 16 30 − 23 ​ ) 45 , 5 + 2 , 19 47 , 69 ​ Interval kelas kuartil atas terletak pada 51 − 55 diperoleh dari 4 3 ​ n = 4 3 ​ × 60 = 45 (lihat dari frekuensi kumulatif), dengan n = 60 , L 3 ​ = 51 − 0 , 5 = 50 , 5 , f 3 ​ = 10 , F 3 ​ = 39 , c = 5 Q 3 ​ ​ = = = = = ​ L 3 ​ + c ⎝ ⎛ ​ f 3 ​ 4 3 ​ n − F 3 ​ ​ ⎠ ⎞ ​ 50 , 5 + 5 ⋅ ⎝ ⎛ ​ 10 4 3 ​ ⋅ 60 − 39 ​ ⎠ ⎞ ​ 50 , 5 + 5 ⋅ ( 10 45 − 39 ​ ) 50.5 + 3 53 , 5 ​ Dengan demikian, kuartil bawah Q 1 ​ = 42 , 17 , median Q 2 ​ = 47 , 69 , dan kuartil atas Q 3 ​ = 53 , 5 .

Ingat kembali rumus kuartil bawah , median , dan kuartil atas  pada data berkelompok sebagai berikut:

 

dimana

tepi bawah kelas kuartil bawah, median, kuartil atas

ukuran data (jumlah frekuensi)

frekuensi pada interval kelas kuartil bawah, median dan kuartil atas

frekuensi kumulatif sebelum kelas kuartil bawah, median dan kuartil atas

panjang kelas

Oleh karena itu, berdasarkan histogram di atas dapat dibuatkan tabel distribusi frekuensi di bawah ini

Interval kelas kuartil bawah terletak pada  diperoleh dari  (lihat dari frekuensi kumulatif), dengan 

Interval kelas median terletak pada  diperoleh dari  (lihat dari frekuensi kumulatif), dengan 

Interval kelas kuartil atas terletak pada  diperoleh dari  (lihat dari frekuensi kumulatif), dengan 

Dengan demikian, kuartil bawah  , median  , dan kuartil atas .

 

 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

27

mawar kasih

Pembahasan lengkap banget

Iklan

Pertanyaan serupa

Tentukan kuartil pertama, kuartil kedua, dan kuartil ketiga dari data pada histogram di samping!

24

4.4

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2024 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia