Iklan

Pertanyaan

Tentukan invers matriks berordo 3 × 3 di bawah ini dengan prinsip OBE . A = ⎝ ⎛ ​ 3 − 1 1 ​ − 1 1 0 ​ 1 0 1 ​ ⎠ ⎞ ​

Tentukan invers matriks berordo  di bawah ini dengan prinsip OBE.

 

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

16

:

51

:

32

Klaim

Iklan

I. Sutiawan

Master Teacher

Mahasiswa/Alumni Universitas Pasundan

Jawaban terverifikasi

Jawaban

melalui prinsipOBEyang diuraikan di atas, invers matriks adalah

 melalui prinsip OBE yang diuraikan di atas, invers matriks A adalah A to the power of negative 1 end exponent equals open parentheses table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell table row cell negative 2 end cell 4 cell negative 6 end cell row cell negative 2 end cell 6 cell negative 6 end cell row 1 cell negative 3 end cell 6 end table end cell end table close parentheses 

Pembahasan

Dengan prinsip OBE , maka: Jadimelalui prinsipOBEyang diuraikan di atas, invers matriks adalah

Dengan prinsip OBE, maka:

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell space space space space space space space space open parentheses table row 3 cell negative 1 end cell 1 1 0 0 row cell negative 1 end cell 1 0 0 1 0 row 1 0 1 0 0 1 end table close parentheses table row cell bevelled 1 third space b subscript 1 end cell row blank row blank end table end cell row blank blank cell open parentheses table row 1 cell bevelled fraction numerator negative 1 over denominator 3 end fraction end cell cell bevelled 1 third end cell cell bevelled 1 third end cell 0 0 row cell negative 1 end cell 1 0 0 1 0 row 1 0 1 0 0 1 end table close parentheses table row blank row cell b subscript 2 plus b subscript 1 end cell row cell b subscript 3 minus b subscript 1 end cell end table end cell row blank blank cell space space space open parentheses table row 1 cell bevelled fraction numerator negative 1 over denominator 3 end fraction end cell cell bevelled 1 third end cell cell bevelled 1 third end cell 0 0 row 0 cell bevelled 2 over 3 end cell cell bevelled 1 third end cell cell bevelled 1 third end cell 1 0 row 0 cell bevelled 1 third end cell cell bevelled 2 over 3 end cell cell bevelled fraction numerator negative 1 over denominator 3 end fraction end cell 0 1 end table close parentheses table row blank row cell bevelled 3 over 2 space b subscript 2 end cell row blank end table end cell row blank blank cell space space space open parentheses table row 1 cell bevelled fraction numerator negative 1 over denominator 3 end fraction end cell cell bevelled 1 third end cell cell bevelled 1 third end cell 0 0 row 0 1 cell bevelled 1 half end cell cell bevelled 1 half end cell cell bevelled 3 over 2 end cell 0 row 0 cell bevelled 1 third end cell cell bevelled 2 over 3 end cell cell bevelled fraction numerator negative 1 over denominator 3 end fraction end cell 0 1 end table close parentheses table row cell space 3 b subscript 1 plus b subscript 2 end cell row blank row cell 3 b subscript 3 minus b subscript 2 end cell end table end cell row blank blank cell space space space space space space space space space space open parentheses table row 1 0 cell bevelled 3 over 2 end cell cell bevelled 3 over 2 end cell cell bevelled 3 over 2 end cell 0 row 0 1 cell bevelled 1 half end cell cell bevelled 1 half end cell cell bevelled 3 over 2 end cell 0 row 0 0 cell bevelled 1 half end cell cell bevelled 3 over 2 end cell cell bevelled fraction numerator negative 3 over denominator 2 end fraction end cell 3 end table close parentheses table row blank row blank row cell 2 cross times b subscript 3 end cell end table end cell row blank blank cell space space space space space space space space space space open parentheses table row 1 0 cell bevelled 3 over 2 end cell cell bevelled 3 over 2 end cell cell bevelled 3 over 2 end cell 0 row 0 1 cell bevelled 1 half end cell cell bevelled 1 half end cell cell bevelled 3 over 2 end cell 0 row 0 0 1 3 cell negative 3 end cell 6 end table close parentheses table row cell bevelled 2 over 3 space b subscript 1 minus b subscript 3 end cell row cell 2 b subscript 2 minus b subscript 3 end cell row blank end table end cell row blank blank cell space space space space space space space space space space space space space space open parentheses table row 1 0 0 cell negative 2 end cell 4 cell negative 6 end cell row 0 1 0 cell negative 2 end cell 6 cell negative 6 end cell row 0 0 1 1 cell negative 3 end cell 6 end table close parentheses table row blank row blank row blank end table end cell end table

Jadi melalui prinsip OBE yang diuraikan di atas, invers matriks A adalah A to the power of negative 1 end exponent equals open parentheses table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell table row cell negative 2 end cell 4 cell negative 6 end cell row cell negative 2 end cell 6 cell negative 6 end cell row 1 cell negative 3 end cell 6 end table end cell end table close parentheses 

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

1

Iklan

Pertanyaan serupa

Invers dari matriks adalah ....

2

0.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02130930000

02130930000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia