Iklan

Pertanyaan

Sederhanakan masing-masing bentuk aljabar di bawah ini. a. ( 6 m 2 n − 3 ) − 2 × 2 ( m − 2 n 3 ) 2

Sederhanakan masing-masing bentuk aljabar di bawah ini.

a.  

Ikuti Tryout SNBT & Menangkan E-Wallet 100rb

Habis dalam

02

:

01

:

44

:

51

Klaim

Iklan

H. Eka

Master Teacher

Mahasiswa/Alumni Universitas Pendidikan Indonesia

Jawaban terverifikasi

Jawaban

bentuk sederhana dari

bentuk sederhana dari table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses 6 m squared n to the power of negative 3 end exponent close parentheses to the power of negative 2 end exponent cross times 2 open parentheses m to the power of negative 2 end exponent n cubed close parentheses squared end cell equals cell fraction numerator n to the power of 12 over denominator 18 m to the power of 8 end fraction end cell end table

Pembahasan

Bilangan berpangkat bulat positif dapat didefinisikan sebagai berikut. Ingat sifat bilangan berpangkat berikut. Penyelesaian soal di atas, yaitu Dengan demikian, bentuk sederhana dari

Bilangan berpangkat bulat positif dapat didefinisikan sebagai berikut.

a to the power of n equals stack a cross times a cross times a cross times horizontal ellipsis cross times a with underbrace below table row blank cell space space space space space space space space end cell cell n space text faktor end text end cell end table

Ingat sifat bilangan berpangkat berikut.

a to the power of m times a to the power of n equals a to the power of m plus n end exponent

open parentheses a to the power of m close parentheses to the power of n equals a to the power of m n end exponent

open parentheses a b close parentheses to the power of m equals a to the power of m b to the power of m

a to the power of negative m end exponent equals 1 over a to the power of m comma space a not equal to 0

Penyelesaian soal di atas, yaitu

table attributes columnalign right center left columnspacing 0px end attributes row blank blank cell open parentheses 6 m squared n to the power of negative 3 end exponent close parentheses to the power of negative 2 end exponent cross times 2 open parentheses m to the power of negative 2 end exponent n cubed close parentheses squared end cell row blank equals cell open parentheses 6 close parentheses to the power of negative 2 end exponent open parentheses m squared close parentheses to the power of negative 2 end exponent open parentheses n to the power of negative 3 end exponent close parentheses to the power of negative 2 end exponent cross times 2 open parentheses open parentheses m to the power of negative 2 end exponent close parentheses squared open parentheses n cubed close parentheses squared close parentheses end cell row blank equals cell 6 to the power of negative 2 end exponent m to the power of negative 4 end exponent n to the power of 6 cross times 2 open parentheses m to the power of negative 4 end exponent n to the power of 6 close parentheses end cell row blank equals cell 1 over 6 squared times 2 times m to the power of negative 4 plus open parentheses negative 4 close parentheses end exponent times n to the power of 6 plus 6 end exponent end cell row blank equals cell 2 over 36 m to the power of negative 8 end exponent n to the power of 12 end cell row blank equals cell 1 over 18 times 1 over m to the power of 8 times n to the power of 12 end cell row blank equals cell fraction numerator n to the power of 12 over denominator 18 m to the power of 8 end fraction end cell end table

Dengan demikian, bentuk sederhana dari table attributes columnalign right center left columnspacing 0px end attributes row cell open parentheses 6 m squared n to the power of negative 3 end exponent close parentheses to the power of negative 2 end exponent cross times 2 open parentheses m to the power of negative 2 end exponent n cubed close parentheses squared end cell equals cell fraction numerator n to the power of 12 over denominator 18 m to the power of 8 end fraction end cell end table

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

2

Iklan

Pertanyaan serupa

( x − 2 y 2 x − 4 y 3 ​ ) − 5 = ...

1

5.0

Jawaban terverifikasi

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Hubungi Kami

Ruangguru WhatsApp

+62 815-7441-0000

Email info@ruangguru.com

[email protected]

Contact 02140008000

02140008000

Ikuti Kami

©2025 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia